民國103年7月號
靜坐冥想的醫療效果
冥想在現代社會越來越流行。非宗教冥想為我們提供了一個應對壓力的方法。除了心靈沉澱,冥想也可以有其他的保健效益 [1, 2]。冥想可以提高副交感神經系統,以及抑制皮質醇,增加多巴胺、羥色胺、內啡肽、催產素。通過上述的效果,它提供了許多健康的好處。在這篇綜述文章中,冥想用來治療多種疾病的機制進行討論,特別是精神疾病,如焦慮和抑鬱。
冥想是通過休息和減少呼吸頻率來練習。通過這種生物反饋方法,它可以降低基礎代謝率,增強副交感神經張力 (降低心臟心率,血壓和呼吸頻率)。雖然它不是入睡的狀態,它是通過誘導睡意相關θ模仿睡眠狀態。通常情況下,冥想有三個階段。在第一階段中,α波會慢慢延長。在第二階段,θ波出現愛睏狀態。在第三階段,隨著β波出現類似睡眠的第一階段和第二階段 [3-5]。副交感神經系統在睡眠過程中被激活。
在最流行的冥想練習,超覺靜坐 (TM) 中,它可以大大降低耗氧量。在清醒,全身耗氧量為每分鐘250立方厘米。在睡眠時,耗氧量在睡眠後5小時最大限度減少8%。但是,在TM5分鐘內,它可以降低體耗氧量高達20%。在新陳代謝方面,同時也可減少心率和血壓。因此,冥想比睡眠更能活化副交感神經 [6, 7],在長期的冥想,杏仁核的灰質密度會降低,而腹運動核和孤束核會增加 [8]。杏仁核掌管交感神經恐懼和戰鬥反應,而腹側核和孤束核與迷走神經有關,屬副交感神經系統 [9-13]。
因為交感神經系統和副交感神經系統拮抗對方,副交感神經系統的激活抑制交感神經系統。清醒時交感神經系統被激活,以保持警覺,以應付日常的生活壓力事件。交感神經支配腎上腺能刺激糖皮質激素的分泌。這是主人的壓力反應 [14, 15] 交感神經系統是恐懼和戰鬥系統,它也可以提升宿主天然性免疫應對急性暴發性細菌感染[16, 17]。
打坐通過上調副交感神經並下調應激激素glucosteroid的分泌,可以減少壓力。副交感神經系統,與交感神經系統相反,能抑制先天性免疫和加強獲得性免疫 [18, 19] 由於類固醇可以抑制宿主免疫,特別是獲得性免疫,如淋巴細胞,它也能抑制輔助性T細胞驅動。打坐會提高多巴胺 (TH17介質) 和血清素 (TH2介質) [20, 21] 因此,通過抑制皮質醇,它可以幫助冥想期間上調多巴胺和血清素 [22]。
催產素激活進一步增強副交感神經活性 [23]。在臨床研究中,增加皮質醇水平與升高HPA活性占抑鬱症門診患者的20%-40%,抑鬱住院病人的40-60%,及30%的強迫症。在許多抑鬱症患者 (69%的抑鬱症患者和抑鬱症有嚴重自殺傾向78%) 也發現Dexamethasone不抑制反應 [24, 25] 大部分抑鬱症患者也顯示出減弱TSH對TRH的反應。HPA及甲狀腺異常情況同樣出現在雙極性疾病的患者。高水平的皮質醇可以抑制POMC和促腎上腺皮質激素的反饋調節。在動物模型中,糖皮質激素受體的過度表達可在小鼠中導致情緒疾病 (情緒不穩定)。皮質醇也可以通過反饋調節抑制TSH水平。因此,可以分別解釋由於TRH或CRH調節的鈍化TSH或ACTH反應。如果POMC的水平較低,則POMC的最終產物,β-內啡肽或腦啡肽,也被下調。
在一些研究中,也指出在抑鬱症患者內啡肽或腦啡肽水平低。交感神經過度激活可能是皮質醇上升的原因。壓力可以增強交感神經張力誘導腎上腺釋放去甲腎上腺素和腎上腺素。值得一提的是意想不到的壓力會引發更多的腎上腺素而熟悉的壓力會引發更多的去甲腎上腺素。
臨床研究中,觀察交感神經系統過度激活的抑鬱症患者,其腎上腺能高度釋放皮質類固醇激素,而這可能解釋了Dexamethasone非抑制。因此,壓力事件導致高皮質醇和隨後的β-內啡肽抑制引起抑鬱症。通過抑制皮質醇,冥想可以上調內啡肽和多巴胺、五羥色胺,以提高興奮感。多巴胺、羥色胺、組織胺控制我們身體的性、飢、渴。多巴胺是有關性高潮而血清素有關食物飽足感。目前的抗精神病類藥物乃作用於多巴胺和血清素系統。冥想可以進一步幫助藥物來緩解抑鬱。
在雙極性疾病,也有HPA軸異常。在此,我亦探討雙極性疾病。嚴重的壓力可能會導致下視丘釋放CRH。然後POMC能刺激前MSH釋放和隨後的促腎上腺皮質激素(ACTH)和β-內啡肽。β-內啡肽的高水平可能與躁鬱症的躁症發作有關。此時有相對較低的皮質醇是與較高多巴胺和血清素。然後,促腎上腺皮質激素可引起皮質醇的分泌。高皮質醇可以抑制POMC生產。然後,β-內啡肽水平變低。多巴胺和血清素水平也將更低。它將與雙相情感障礙的抑鬱發作有關。在雙極性疾病,狂發作抑鬱發作之前通常會發生。而且,額外的壓力事件會導致躁狂抑鬱症另一個週期。在基因研究中,與雙極性疾病相關的最重要的基因是POMC和腦啡肽。因此,雙相情感障礙的發病機制顯示冥想可以有助於雙極性疾病的抑鬱發作。
相比於情緒障礙乃皮質醇分泌過多,焦慮症只是交感神經系統過度興奮。交感神經系統是一種恐懼和戰鬥反應。嚴重威脅會激活大腦區域的藍斑核和杏仁核。杏仁核參與恐懼記憶和逃避反應。急性恐懼也可以通過藍斑激活交感神經系統。它導致心動過速,震顫,出汗等常見於焦慮症。通過抑制交感神經系統,冥想也有助於減輕焦慮障礙,如廣泛性焦慮症,恐慌症,恐懼症,創傷後應激障礙,以及其他急性應激障礙。
至於藥物成癮,冥想也可以幫助。酗酒是物質成癮的重要問題。酒精代謝可產生乙酰輔酶A 它是類固醇激素,如皮質醇的構成分子。在慢性酒精中毒,高皮質醇水平通常在這些患者中觀察的到。皮質醇會抑制內啡肽產生短期的警覺性 (皮質醇興奮) 和長期憂鬱。因此,酒精中毒通常伴隨抑鬱症。冥想可以降低交感神經的應激反應以及皮質醇的水平,因此它可以幫助戒酒 [26, 27]。
濫用藥物的另一個主要群體是擬交感作用劑,如安非他命,可卡因,尼古丁和低劑量的大麻。這些藥物也可以長期過度激活交感神經系統,提高警覺性和多巴胺、皮質醇相關的欣快感。冥想可以增強副交感神經張力,抑制交感神經張力。因此,它也可以幫助這些類型的藥物濫用患者。
最後,通過冥想提升副交感神經系統本身具有的效果。它可以幫助減少心悸和高血壓。它也可以增強抵禦病毒,寄生蟲和細胞內細菌的免疫力 [28] 研究發現冥想後升高對流感抗體高度增加 [29]。因此,冥想具有提高宿主免疫的效果。例如,艾滋病患者乃是受損適應性免疫,冥想可以幫助這些患者提高自身免疫力。
冥想可以提高副交感神經系統,以及抑制皮質醇,增加多巴胺、羥色胺、內啡肽、催產素。通過上述的效果,它提供了許多健康的好處,以應付許多精神疾病如藥物成癮、抑鬱、焦慮、雙極性疾病、強迫症。它也可以幫助管理高血壓和增強身體的免疫反應。因此,冥想應作為現代醫學一種有效輔助治療方法。
參考文獻
1. M. Goyal, S. Singh, E. M. Sibinga, N. F. Gould, A. Rowland-Seymour, R. Sharma, et al., "Meditation programs for psychological stress and well-being: a systematic review and meta-analysis," JAMA Intern Med, vol. 174, pp. 357-68, Mar 2014.
2. T. W. Pace, L. T. Negi, D. D. Adame, S. P. Cole, T. I. Sivilli, T. D. Brown, et al., "Effect of compassion meditation on neuroendocrine, innate immune and behavioral responses to psychosocial stress," Psychoneuroendocrinology, vol. 34, pp. 87-98, Jan 2009.
3. L. I. Aftanas and S. A. Golocheikine, "Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation," Neurosci Lett, vol. 310, pp. 57-60, Sep 7 2001.
4. R. Hebert and D. Lehmann, "Theta bursts: an EEG pattern in normal subjects practising the transcendental meditation technique," Electroencephalogr Clin Neurophysiol, vol. 42, pp. 397-405, Mar 1977.
5. A. Kasamatsu and T. Hirai, "An electroencephalographic study on the zen meditation (Zazen)," Folia Psychiatr Neurol Jpn, vol. 20, pp. 315-36, 1966.
6. H. Benson, J. F. Beary, and M. P. Carol, "The relaxation response," Psychiatry, vol. 37, pp. 37-46, Feb 1974.
7. H. Benson, M. M. Greenwood, and H. Klemchuk, "The relaxation response: psychophysiologic aspects and clinical applications," Int J Psychiatry Med, vol. 6, pp. 87-98, 1975.
8. B. K. Holzel, J. Carmody, K. C. Evans, E. A. Hoge, J. A. Dusek, L. Morgan, et al., "Stress reduction correlates with structural changes in the amygdala," Soc Cogn Affect Neurosci, vol. 5, pp. 11-7, Mar 2010.
9. J. A. Brefczynski-Lewis, A. Lutz, H. S. Schaefer, D. B. Levinson, and R. J. Davidson, "Neural correlates of attentional expertise in long-term meditation practitioners," Proc Natl Acad Sci U S A, vol. 104, pp. 11483-8, Jul 3 2007.
10. S. W. Lazar, G. Bush, R. L. Gollub, G. L. Fricchione, G. Khalsa, and H. Benson, "Functional brain mapping of the relaxation response and meditation," Neuroreport, vol. 11, pp. 1581-5, May 15 2000.
11. S. W. Lazar, C. E. Kerr, R. H. Wasserman, J. R. Gray, D. N. Greve, M. T. Treadway, et al., "Meditation experience is associated with increased cortical thickness," Neuroreport, vol. 16, pp. 1893-7, Nov 28 2005.
12. A. Newberg, A. Alavi, M. Baime, M. Pourdehnad, J. Santanna, and E. d'Aquili, "The measurement of regional cerebral blood flow during the complex cognitive task of meditation: a preliminary SPECT study," Psychiatry Res, vol. 106, pp. 113-22, Apr 10 2001.
13. P. Vestergaard-Poulsen, M. van Beek, J. Skewes, C. R. Bjarkam, M. Stubberup, J. Bertelsen, et al., "Long-term meditation is associated with increased gray matter density in the brain stem," Neuroreport, vol. 20, pp. 170-4, Jan 28 2009.
14. D. L. Felten, S. Y. Felten, D. L. Bellinger, S. L. Carlson, K. D. Ackerman, K. S. Madden, et al., "Noradrenergic sympathetic neural interactions with the immune system: structure and function," Immunol Rev, vol. 100, pp. 225-60, Dec 1987.
15. A. P. Kohm and V. M. Sanders, "Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo," Pharmacol Rev, vol. 53, pp. 487-525, Dec 2001.
16. M. A. Flierl, D. Rittirsch, B. A. Nadeau, A. J. Chen, J. V. Sarma, F. S. Zetoune, et al., "Phagocyte-derived catecholamines enhance acute inflammatory injury," Nature, vol. 449, pp. 721-5, Oct 11 2007.
17. M. A. Flierl, D. Rittirsch, B. A. Nadeau, J. V. Sarma, D. E. Day, A. B. Lentsch, et al., "Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response," PLoS One, vol. 4, p. e4414, 2009.
18. H. Fujino, Y. Kitamura, T. Yada, T. Uehara, and Y. Nomura, "Stimulatory roles of muscarinic acetylcholine receptors on T cell antigen receptor/CD3 complex-mediated interleukin-2 production in human peripheral blood lymphocytes," Mol Pharmacol, vol. 51, pp. 1007-14, Jun 1997.
19. K. J. Tracey, "The inflammatory reflex," Nature, vol. 420, pp. 853-9, Dec 19-26 2002.
20. T. Durk, D. Duerschmied, T. Muller, M. Grimm, S. Reuter, R. P. Vieira, et al., "Production of serotonin by tryptophan hydroxylase 1 and release via platelets contribute to allergic airway inflammation," Am J Respir Crit Care Med, vol. 187, pp. 476-85, Mar 1 2013.
21. K. Nakano, K. Yamaoka, K. Hanami, K. Saito, Y. Sasaguri, N. Yanagihara, et al., "Dopamine induces IL-6-dependent IL-17 production via D1-like receptor on CD4 naive T cells and D1-like receptor antagonist SCH-23390 inhibits cartilage destruction in a human rheumatoid arthritis/SCID mouse chimera model," J Immunol, vol. 186, pp. 3745-52, Mar 15 2011.
22. T. W. Kjaer, C. Bertelsen, P. Piccini, D. Brooks, J. Alving, and H. C. Lou, "Increased dopamine tone during meditation-induced change of consciousness," Brain Res Cogn Brain Res, vol. 13, pp. 255-9, Apr 2002.
23. M. Gamer and C. Buchel, "Oxytocin specifically enhances valence-dependent parasympathetic responses," Psychoneuroendocrinology, vol. 37, pp. 87-93, Jan 2012.
24. Carroll, G. C. Curtis, and J. Mendels, "Neuroendocrine regulation in depression. I. Limbic system-adrenocortical dysfunction," Arch Gen Psychiatry, vol. 33, pp. 1039-44, Sep 1976.
25. B. J. Carroll, G. C. Curtis, and J. Mendels, "Neuroendocrine regulation in depression. II. Discrimination of depressed from nondepressed patients," Arch Gen Psychiatry, vol. 33, pp. 1051-8, Sep 1976.
26. W. R. Lovallo, "Cortisol secretion patterns in addiction and addiction risk," Int J Psychophysiol, vol. 59, pp. 195-202, Mar 2006.
27. Z. Sarnyai, Y. Shaham, and S. C. Heinrichs, "The role of corticotropin-releasing factor in drug addiction," Pharmacol Rev, vol. 53, pp. 209-43, Jun 2001.
28. R. J. Davidson, J. Kabat-Zinn, J. Schumacher, M. Rosenkranz, D. Muller, S. F. Santorelli, et al., "Alterations in brain and immune function produced by mindfulness meditation," Psychosom Med, vol. 65, pp. 564-70, Jul-Aug 2003.
29. B. Barrett, M. S. Hayney, D. Muller, D. Rakel, A. Ward, C. N. Obasi, et al., "Meditation or exercise for preventing acute respiratory infection: a randomized controlled trial," Ann Fam Med, vol. 10, pp. 337-46, Jul-Aug 2012.