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Background: Osteoporosis and immune-associated disorders are highly prevalent

among menopausal women, and diet control and exercise exert beneficial effects on

physiological modulation in this population. A controlled diet with a low fat content and a

balanced caloric intake improves menopausal health, but the health effects of excessive

fructose consumption on menopausal women are yet to be confirmed. In addition,

whole-body vibration (WBV), a safe passive-training method, has been shown to have

multiple beneficial effects on metabolism regulation, obesity, and bone health.

Methods: The ovariectomized (OVX) C57BL/6J model was used to verify the effects

of WBV combined with a high-fructose diet (HFrD) for 16 weeks on physiological

modulation and immune responses. The mice were randomly allocated to sham, OVX,

OVX+HFrD, and OVX+HFrD+WBV groups, which were administered with the indicated

ovariectomy, dietary and WBV training treatments. We conducted growth, dietary intake,

glucose homeostasis, body composition, immunity, inflammation, histopathology, and

osteoporotic assessments (primary outcomes).

Results: Our results showed that the isocaloric HFrD in OVX mice negated

estrogen-deficiency–associated obesity, but that risk factors such as total cholesterol,

glucose intolerance, osteoporosis, and liver steatosis still contributed to the development

of metabolic diseases. Immune homeostasis in the OVX mice was also negatively

affected by the HFrD diet, via the comprehensive stimulation of T cell activation,

causing inflammation. The WBV intervention combined with the HFrD model significantly

ameliorated weight gain, glucose intolerance, total cholesterol, and inflammatory

cytokines (interferon gamma [IFN-γ], interleukin [IL]-17, and IL-4) in the OVX mice,

although osteoporosis and liver steatosis were not affected compared to the negative

control group. These findings indicate that an isocaloric high-fructose diet alone may not
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FIGURE 8 | The effects of whole-body vibration (WBV) combined with a high-fructose diet (HFrD) on ovariectomized (OVX) mice in terms of liver steatosis. The livers

were individually stained with hematoxylin and eosin (A) and Oil Red O (B) to assess pathological lipid accumulation. The level of severity of the fatty change was

categorized as mild (1: 6–33%), moderate (2: 34–66%), or severe (3: 67–100%). The data are presented as means ± SD. Different superscript letters indicate

significant differences (P < 0.05), as indicated by a one-way analysis of variance.

Many potentially beneficial strategies, such as hormone
therapy, medication, phytochemical supplementation, exercise
intervention, and combinatory therapies, have been reported
to address syndromes and pathogenesis related to estrogen
deficiency. Several types of exercise intervention—treadmill
usage (19), swimming (40), and WBV (18)—have also been
shown to aid in the mitigation of high-fat-diet–induced obesity.
Furthermore, thermogenesis has also been shown to increase
in response to the increase in core temperature associated with
intense application (0.13–0.68 g) of WBV (41). Thus, the greater
energy expenditure and thermogenesis stemming from WBV
training may have contributed toward the significant weight
loss observed in the OVX+HFrD+WBV group compared to
the OVX+HFrD group (Figure 2). The WBV treatment has
been observed to improve lipid and glucose metabolism via
activation of the AMPK/CPT1 signaling pathway and improving
mitochondrial function in aging mice (42). The TC, glucose
levels and glucose tolerance were also significantly better
in the OVX+HFrD+WBV group than in the OVX+HFrD
group in this study. In previous studies related to the
effects of exercise training on an OVX model, a 6-week
swimming-exercise treatment significantly elevated muscular

peroxisome proliferator-activated receptor alpha (PPARα) and
uncoupling protein 3 (UCP3), which are responsible for
fatty-acid oxidation (43), and treadmill exercises significantly
mitigated the effects of OVX on serum 17 beta-estradiol levels,
the ratio of HDL-C to TC, fat accumulation in the liver, and intra-
abdominal fat proportion (44). However, we found that while
the WBV intervention combined with an HFrD in OVX-treated
mice significantly reduced TC levels and improved glucose
homeostasis and weight gain, it did not affect fat proportions
or ameliorate liver steatosis relative to the OVX+HFrD group.
This may be due to the HFrD diet and the type of exercise
intervention used. The combination of exercise with a nutritional
strategy has been shown to result in more-beneficial effects in
terms of the amelioration of metabolic disease in menopausal
populations (45). Thus, the effects of combining WBV with
various diets on the metabolic diseases induced by OVX
should be investigated further, and this in turn may provide
more information regarding the mechanisms behind disease
development and their relationships with hormone deficiencies,
dietary differences, and exercise.

The prevalence of osteoporosis in women varies across
countries; for example, in the United Kingdom it is 9%, in
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France and Germany 15%, in the USA 16%, in Taiwan 25%,
and in Japan 38%. The risk of osteoporosis in postmenopausal
women has been associated with multiple factors, including
age, the age when menopause started, the number of years
since menopause started, body mass index, and educational level
(46). The ovariectomized model was established to simulate
clinical osteoporosis and has been studied to examine potential
mechanisms and aid in the development of prevention and
therapeutic strategies. The changes in osteoporotic indices such
as BMD, Tb.N, Tb.Th, and Tb.Sp have been observed at specific
timepoints post-OVX treatment using various skeletal samples,
such as the proximal tibia (14 days), lumbar vertebrae (30
days) and femur (60 days) (47). Mice with ovariectomy-induced
osteoporosis have previously been analyzed using micro-CT for
BMD, tissue volume (TV), bone volume (BV), BV/TV, Tb.Th,
and Tb.N, using the distal femur, 6 weeks post-surgery (48). In
the current study, after the treatments had been administered
for 16 weeks, we tested the BMD, BV/TV, Tb.Sp, and Tb.N
and observed significant deterioration due to the ovariectomy.
However, we found that these osteoporosis risk factors were
neither significantly alleviated nor exacerbated by the HFrD and
WBV treatments (Figure 7). The implementation of vibration
treatment during early postmenopausal osteoporosis (1–20
weeks) promotes osteogenic differentiation and suppresses the
progression of postmenopausal osteoporosis via the upregulation
of estrogen receptor alpha (Erα) and activation of the canonical
Wnt pathway (49). Mechanical vibration also results in an
increase in the bone mass of the femur, increasing the spongy-
bone percentage as well as the percentage and thickness of the
cortical bone (50). Additionally, a high-fructose diet results in the
reprogramming of metabolic pathways to increase their tendency
toward glutaminolysis and oxidative metabolism, which support
increased inflammatory-cytokine production (51). Chronic-
inflammation conditions may induce the differentiation of
pathological osteoclasts, resulting in excessive bone resorption
via RANKL-independent, a cytokine-mediated pathway involved
in the progression of osteoporosis (52). However, contradicting
results have also been obtained, showing that 10 weeks of
vibration treatment did not significantly affect the trabecular
volume fraction or cortical-bone volume (53). Thus, the vibration
intensity, duration, frequency, and the model used may all
modulate the osteoporosis-amelioration affect seen, and different
dietary energy sources may also contribute to the observed
differences in the effects of vibration interventions. In future
research, the timeframe for optimized observation of OVX-
induced osteoporosis should be tested further, since dietary
conditions, the rodent model, the quality of surgery, and the
effectiveness of intervention treatments may all be affected
by the degree of severity of the inducible-disease model. As
limitation of current study, a non-ovariectomized control group,
submitted the same experimental conditions, could significantly
contribute to more enlightening comparations. Thus, it may
be useful to investigate inflammatory osteoporosis induced by
a high-fructose diet under experimental conditions without
ovariectomy treatment, to confirm the role of WBV intervention
in osteoporosis amelioration.

It has been demonstrated that ovariectomy increases
susceptibility to the severity of chronic arthritis and local

inflammation because of the resulting lack of estrogen, and also
that estradiol-replacement therapy can induce a protective anti-
inflammatory effect and improves innate immune responses in
ovariectomized arthritic mice (54). In additional, the structural
changes and inflammatory response in the kidney and liver
have been shown to be significantly increased by a high-fat diet
and exacerbated by ovariectomized conditions (55). Estrogen
is thought to play an important regulatory role in the innate
and adaptive immune systems. In previous studies, the effects
of M2 macrophage activation were attenuated under estrogen
deficiency in the OVX model (56). The WBV treatment caused
macrophages to polarize from the M1 to the M2 subset, resulting
in a decrease in pro-inflammatory cytokines and an increase
in anti-inflammatory cytokines, which was made possible via
the modulation of microbial diversity (57). The infiltration
of activated T cells, an accumulation and polarization of
macrophages, and increases in the populations of activated
CD4+ and CD8+ T cells have been observed in high-fat-diet–
induced obese mice (58). In a previous study, WBV was shown
to result in significant improvements in indices such as BV/TV,
TV apparent, Tb.N, and Tb.Th in ovariectomized rats, and it also
enhanced the pharmaceutical effects of alendronate by inducing
further improvements in trabecular architecture (59). In our
study, we observed a significant decrease in the M2 macrophage
population in the adipocyte tissues in the OVX and OVX+HFrD
groups, which was not reversed by the WBV treatment, possibly
because of the HFrD treatment. The CD4+ T cell population was
also significantly increased in the OVX+HFrD group, but the
WBV treatment did significantly mitigate T-cell activation. These
findings suggest that the HFrD diet exacerbates OVX-associated
inflammation, while the WBV intervention may ameliorate
this inflammation. Our results also showed that the WBV
intervention did not alleviate OVX-induced osteoporosis, which
is not consistent with previous findings. These observations
suggest that diet, exercise intensity, and induced conditions
may all play crucial roles in the overall physiological impacts
and treatment outcomes. Based on our findings, we believe that
an isocaloric high-fructose replacement diet should perhaps
be considered a potential health risk, especially with respect to
the menopausal population, and that these factors should be
further investigated.

CONCLUSIONS

In this study, we found that an isocaloric high-fructose
replacement diet in an OVX model may negate estrogen-
deficiency–associated obesity, but that multiple risk factors,
including higher TC, glucose intolerance, inflammation, and liver
steatosis, may still contribute to the development of metabolic
diseases. Even though the isocaloric high-fructose diet may not
result in postmenopausal obesity, other deleterious physiological
impacts still exist. Thus, the WBV method should be considered
as an alternative passive-exercise prescription for people with
poor compliance or who are unable or unwilling to use traditional
exercise methods. This method could be further applied as a
preventive or therapeutic strategy, combined with nutritional
intervention, medication, and other exercise prescriptions, to
better maintain the health of menopausal populations.
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