# NEW ERGOSTANE AND LANOSTANE FROM ANTRODIA CAMPHORATA

Chien-Chang Shen<sup>1</sup>, Yuh-Chi Kuo<sup>1,2</sup>, Ray-Ling Huang<sup>1</sup>, Lie-Chwen Lin<sup>1</sup>, Ming-Jaw Don<sup>1</sup>, Tun-Tschu Chang<sup>3</sup> and Cheng-Jen Chou<sup>1</sup>

<sup>1</sup>National Research Institute of Chinese Medicine, <sup>2</sup>Institute of Life Science, Fu-Jen University, <sup>3</sup>Division of Forest Protection, Taiwan Forestry Research Institute, Taipei, Taiwan (Received 3<sup>rd</sup> September 2003, revised Ms received 7<sup>th</sup> October 2003, accepted 11<sup>th</sup> November 2003)

Fourteen compounds (one biphenyl, six ergostane, and seven lanostane derivatives) have been isolated from the fruiting body of *Antrodia camphorata*. They are  $3\beta$ ,  $15\alpha$ -dihydroxylanosta-7,9(11),24-trien-21-oic acid, antcin K, dehydroeburicoic acid, eburicoic acid, methyl antcinate B, methyl antcinate H, zhankuic acid A, zhankuic acid B, dehydrosulphurenic acid, sulphurenic acid,  $15\alpha$ -acetyl-dehydrosulphurenic acid, versisponic acid D, zhankuic acid C, and 2,2',5,5'-tetra-methoxy-3,4,3',4'-bis(methlylenedioxy)-6,6'-dimethylbiphenyl. Among them, two lanostane-type compounds - sulphurenic acid and versisponic acid D were not previously reported from this fungus.  $3\beta$ ,  $15\alpha$ -Dihydroxylanosta-7,9(11),24-trien-21-oic acid and antcin K are first found from nature and their structures were determined by spectroscopic methods.

Key words: Antrodia camphorata, Fungi, Ergostane, Lanostane, Biphenyl derivatives.

# **INTRODUCTION**

The fruiting body of *Antrodia camphorata*<sup>1</sup> is well known in Taiwan by name niu-chang-chih or jang-jy. This fungus is known only in Taiwan and is restricted to *Cinnamonum kanehirai* Hay. (Lauraceae). The basidiomes have been used for the treatment of food and drug intoxication, diarrhea, abdominal pain, hypertension, skin itching, and cancer.<sup>2</sup> In the previous work, chemical investigation revealed that the constituents of niu-chang-chih contained triterpenes, steroids, and a sesquiterpene<sup>3-8</sup> and pharmacological studies of this fungus revealed that one component (Zhankuic acid A) showed cytotoxicity against P-388 murine leukaemia cell.<sup>4</sup> However, there has been a relative scarcity of papers on other anti-tumor, anti-hepatitis-B virus, and immune-pharmacological activities of *A. camphorata*. In the course of our search for physiologically active substances in nature, we found that water extract of *A. camphorata* suppressed proliferation in HMNC activated by PHA with IC<sub>50</sub> of 17.5 µg/mL. It also possessed the

**Correspondence to**: Cheng-Jen Chou, National Research Institute of Chinese Medicine, Tel: 886-2-28201999 ext. 7101, Fax: 886-2-28264276, E-mail: choucj@cma23.nricm.edu.tw

activities of anti-hepatitis-B surface antigen and e antigen with EC<sub>50</sub> of  $< 50 \ \mu$ g/mL and 86.5  $\mu$ g/mL, respectively. In the anti-tumor experiment, ethanol extract of *A. camphorata* showed the inhibitory activities on K562 and Jurkat cell lines with IC<sub>50</sub> of 17.5  $\mu$ g/mL and 44  $\mu$ g/mL, respectively. This observation led us to investigate the potential biologically active substances of the fruit-body of *A. camphorata*. In the present paper, we describe the isolation and identification of one biphenyl, six ergostane, and seven lanostane derivatives. Among them, two lanostane-type compounds-sulphurenic acid and versisponic acid D were not previously reported from this fungus.<sup>9</sup> Two other compounds are first found from nature; they are namely as 3 $\beta$ ,15 $\alpha$ -dihydroxylanosta-7,9(11),24-trien-21-oic acid (1) and antcin K (3 $\alpha$ ,4 $\beta$ ,7 $\beta$ - trihydroxy-4 $\alpha$ -methylergosta-8, 24(28)-dien-11-on-26-oic acid, **2**), respectively.

# **EXPERIMENTAL**

#### **General Experiment Procedures**

Melting points were determined with a Yanaco MP-13 micro-melting point apparatus and are uncorrected. Optical rotations were measured on a JASCO DIP-370 polarimeter. HRFABMS spectra were recorded on a JEOL JMS-HX 110 spectrometer. EIMS spectra were recorded on a Finnigan MAT LCQ LC/MS spectrometer. <sup>1</sup>H, <sup>13</sup>C, and 2D NMR spectra were recorded on a Bruker AC-300P spectrometer or a Varian UNITY INOVA 500 MHz NMR spectrometer. Chemical shifts are shown in δ values (ppm) with deuterated solvents as internal standard.

#### Materials

*A. camphorata* (niu-chang-chih) was purchased from a Chinese medicinal store in Taipei, and identified by Dr. Tun-Tschu Chang of the Division of Forest Protection, Taiwan Forestry Research Institute. A voucher specimen was deposited in the herbarium of Taiwan Forestry Research Institute, Taipei, Taiwan.

#### **Extraction and Isolation**

The chipped fruiting bodies of *A. camphorata* (200 g) were extracted with distilled water at 80 °C for three times, to give 25.4 g of a solid extract. The residue of fruiting bodies was then refluxed four times with ethanol for 6 hr. The extracts were filtered and evaporated. The concentrate (51.8 g) was suspended in 1.5 L distilled water and partitioned between dichloromethane and water (1:1 v/v) to afford organic and aqueous fractions. The organic fraction (49.8 g) was dissolved in methanol and divided into methanol-soluble (38.1 g) and methanol-insoluble (1.21 g) portions. The methanol-soluble part was carried out on Sephadex LH-20 column chromatography with methanol, and five fractions (I-V) were collected. The fractions were collected in 250 mL portions and pooled according to their TLC profile in toluene–ethyl acetate–acetic acid solvent system. Fr-III (32.1 g) was redissolved in methanol and divided into

methanol-soluble and methanol-insoluble portions. The insoluble portion (1.1 g) was separated by HPLC (Cosmosil  $5C_{18}$ -AR- II column; MeOH/H<sub>2</sub>O/AcOH solvent system) to afford dehydroeburicoic acid (**3**) and eburicoic acid (**4**). The MeOH-soluble portion (Fr-III-MS; 32.5 g) was chromatographed on silica gel MPLC (MeOH gradient in CH<sub>2</sub>Cl<sub>2</sub>) to give eight sub-fractions (Fr-III-MS-1~Fr-III-MS-8). Further chromatographic separation of Fr-III-MS-3 on silica gel MPLC (acetone gradient in hexane) and HPLC (Cosmosil  $5C_{18}$ -AR-II column; MeOH/H<sub>2</sub>O/AcOH solvent system) afforded seven compounds: methyl-4 $\alpha$ -methylergosta-8,24(28)-diene-3,7,11-trion-26-oate (**5**), methyl antcinate H (**6**), zhankuic acid A (**7**), zhankuic acid B (**8**),  $3\beta$ ,15 $\alpha$ -dihydroxylanosta-7,9(11),24-trien-21-oic acid (**1**), dehydrosulphurenic acid (**9**), and sulphurenic acid (**10**). Fr-III-MS-4 was separated and purified similarly as above treatment to give  $15\alpha$ -acetyl-dehydrosulphurenic acid (**11**) and versisponic acid D (**12**). Fr-III-MS-6 was rechromatographed by silica gel column and eluted with hexane-acetone of increasing polarity to give six fractions (Fr-III-MS-6-6). Fr-III-MS-6 sugs further purified by Sephadex LH-20 column and eluted with acetone to give zhankuic acid C (**13**). Fr-III-MS-8 was separated and purified similarly as above treatment to give zhankuic acid C (**13**). Fr-III-MS-8 was separated and purified similarly as above treatment to give zhankuic acid C (**13**). Fr-III-MS-8 was separated and purified similarly as above treatment to give zhankuic acid C (**13**). Fr-III-MS-8 was separated and purified similarly as above treatment to give antcin K (**2**). After chromatographic separation of Fr-V (1.2 g) on a Cosmosil 75C<sub>18</sub>-OPN column (methanol gradient in water), sub-fraction (Fr-V-5) was further purified by Sephadex LH-20 column and eluted with methanol to give 2,2',5,5'-tetramethoxy-3,4,3',4'-bis(methylenedioxy)- 6,6'-dimethylbiphenyl (**14**).

#### $3\beta$ , $15\alpha$ -Dihydroxylanosta-7, 9(11), 24-trien-21-oic acid (1)

White needles; mp 259-261 °C (MeOH);  $[\alpha]_D$  +83.3° (c 0.3, MeOH); HRMS (Finnigan MAT-95XL): m/z 470.3415 [M]<sup>+</sup> (C<sub>30</sub>H<sub>46</sub>O<sub>4</sub> requires 470.3433.); ESI-MS (pos.): m/z 471 (M + 1); <sup>1</sup>H and <sup>13</sup>C NMR: see Table 1.

#### Antcin K $(3\alpha, 4\beta, 7\beta$ -trihydroxy-4 $\alpha$ -methylergosta-8,24(28)-dien-11-on-26-oic acid, 2)

Colorless crystal; mp 227-230 °C (dil. MeOH);  $[\alpha]_D$  +92.0° (c 0.25, MeOH); HRMS (Joel SX102A): m/z 488.3133 [M]<sup>+</sup> (C<sub>29</sub>H<sub>44</sub>O<sub>6</sub> requires 488.3134.); ESI-MS (neg.): m/z 487 (M–1); <sup>1</sup>H and <sup>13</sup>C NMR: see Table 2.

### Dehydroeburicoic acid (24-methylenelanosta-7,9(11)-dien-3β-ol-21-oic acid, 3)<sup>8</sup>

White fine needles; mp 270-273 °C (MeOH); <sup>1</sup>H NMR (300 MHz, pyridine-d<sub>5</sub>):  $\delta$  1.90 (2H, m, H-2), 3.43 (1H, t, J = 7.5 Hz, H-3), 1.26 (1H, H-5), 2.16 (2H, H-6), 5.61 (1H, br s, H-7), 5.36 (1H, d, J = 5.1 Hz, H-11), 2.50 (1H, H-12  $\alpha$ ), 2.33 (1H, H-12  $\beta$ ), 0.99 (3H, s, H-18), 1.19 (3H, s, H-19), 2.64 (1H, td, J = 11.0, 3.0 Hz, H-20), 2.29 (1H, H-25), 1.02 (3H, d, J = 3.0 Hz, H-26 or H-27), 1.00 (3H, d, J = 3.0 Hz, H-27 or H-26), 4.88 (1H, br s, H-28a), 4.92 (1H, br s, H-28b), 1.11 (3H, s, H-29), 1.05 (6H, s, H-30, 31); <sup>13</sup>C NMR (75 MHz, pyridine-d<sub>5</sub>):  $\delta$  36.4 (t, C-1), 28.7 (t, C-2), 78.0 (d, C-3), 39.4 (s, C-4), 49.1 (d, C-5), 23.6 (t, C-6), 121.3 (d, C-7), 142.8 (s, C-8), 146.6 (s, C-9), 37.9 (s, C-10), 116.6 (d, C-11), 36.0 (t, C-12), 44.3 (s, C-13), 50.5 (s, C-14), 31.8 (t, C-15), 27.3 (t, C-16), 48.1 (d, C-17), 16.3 (q, C-18),

| Atom | <sup>13</sup> C | $^{1}\mathrm{H}$           | HMBC                                                                 |
|------|-----------------|----------------------------|----------------------------------------------------------------------|
| 1    | 36.4 <i>t</i>   | 1.49, 1.96                 | H <sub>3</sub> -19, H-5, H-2, H-3                                    |
| 2    | 28.7 <i>t</i>   | 1.92                       |                                                                      |
| 3    | 78.0 <i>d</i>   | 3.44 br t (7.0)            | H <sub>3</sub> -30, H <sub>3</sub> -29, H-5, H-2, H-1                |
| 4    | 39.3 s          |                            | H <sub>3</sub> -30, H <sub>3</sub> -29, H-5, H-3, H-2                |
| 5    | 49.7 <i>d</i>   | 1.32 <i>dd</i> (4.5, 11.5) | H <sub>3</sub> -30, H <sub>3</sub> -29, H <sub>3</sub> -19, H-7, H-6 |
| 6    | 23.5 <i>t</i>   | 2.11, 2.20                 | H-5, H-7                                                             |
| 7    | 122.3 <i>d</i>  | 6.49 <i>d</i> (6.0)        | H-5, H-6                                                             |
| 8    | 141.9 <i>s</i>  |                            | H <sub>3</sub> -28, H-6, H-11, H-12, H-15                            |
| 9    | 146.9 <i>s</i>  |                            | H <sub>3</sub> -19, H-5, H-7, H-12                                   |
| 10   | 37.92 s         |                            | H <sub>3</sub> -19, H-1, H-2, H-5, H-11                              |
| 11   | 116.3 <i>d</i>  | 5.38 <i>d</i> (6.5)        | H-12                                                                 |
| 12   | 36.8 <i>t</i>   | 2.39 dd (6.5, 17.5)        | H <sub>3</sub> -18, H-11, H-17                                       |
| 13   | 44.9 <i>s</i>   |                            | H <sub>3</sub> -18, H <sub>3</sub> -28, H-12, H-17, H-20             |
| 14   | 52.5 s          |                            | H <sub>3</sub> -18, H <sub>3</sub> -28, H-12, H-15, H-7              |
| 15   | 73.7 <i>d</i>   | 4.77 dd (6.0, 10.0)        | H <sub>3</sub> -28, H-16                                             |
| 16   | 39.6 <i>t</i>   | 2.29                       | H-20, H-15, H-17                                                     |
| 17   | 46.5 <i>d</i>   | 2.72                       | H-16, H <sub>3</sub> -18, H-20                                       |
| 18   | 16.8 <i>q</i>   | 1.12 <i>s</i>              |                                                                      |
| 19   | 23.2 q          | 1.08 <i>s</i>              | H-1, H-5                                                             |
| 20   | 48.8 <i>d</i>   | 2.65 td (3.5, 11.5)        | H-17, H-22, H-23                                                     |
| 21   | 178.7 <i>s</i>  |                            | H-22, H-20                                                           |
| 22   | 33.3 <i>t</i>   | 1.78, 1.93                 | H-17, H-20, H-23, H-24                                               |
| 23   | 26.7 <i>t</i>   | 2.24, 2.34                 | H-20, H-22, H-24                                                     |
| 24   | 124.8 <i>d</i>  | 5.28 t (7.0)               | H <sub>3</sub> -26, H <sub>3</sub> -27, H-22, H-23                   |
| 25   | 131.7 <i>s</i>  |                            | H <sub>3</sub> -26, H <sub>3</sub> -27, H-23                         |
| 26   | 25.8 q          | 1.63 <i>s</i>              | H <sub>3</sub> -27, H-24                                             |
| 27   | 17.7 q          | 1.58 s                     | H <sub>3</sub> -26, H-24                                             |
| 28   | 18.3 q          | 1.42 <i>s</i>              | H-15                                                                 |
| 29   | 28.8 q          | 1.18 <i>s</i>              |                                                                      |
| 30   | 16.6 q          | 1.10 <i>s</i>              |                                                                      |

23.0 (q, C-19), 49.8 (d, C-20), 178.5 (s, C-21), 32.8 (t, C-22), 31.6 (t, C-23), 155.9 (s, C-24), 34.3 (d, C-25), 21.9 (q, C-26), 22.0 (q, C-27), 107.1 (t, C-28), 25.9 (q, C-29), 28.8 (q, C-30), 16.6 (q, C-31); EIMS (GCQ, pos.): *m/z* 469 (M+1). **Table 1. NMR spectral data of 3β,15α-dihydroxylanosta-7,9(11),24-trien-21-oic acid (in pyridine-d<sub>5</sub>; 500 MHz)**<sup>a</sup>

<sup>a</sup>Assignments were based on <sup>13</sup>C-DEPT, <sup>1</sup>H-<sup>1</sup>H COSY, <sup>1</sup>H-<sup>13</sup>C HMQC and HMBC spectra.

### Eburicoic acid (24-methylenelanosta-8-en-3 $\beta$ -ol-21-oic acid, 4)<sup>10</sup>

White needles; mp 289-291 °C (MeOH); <sup>1</sup>H NMR (300 MHz, pyridine-d<sub>5</sub>): δ 3.41 (1H, br t, *J* = 7.6 Hz, H-3), 1.00 (3H, s, H-18), 1.06 (3H, s, H-19), 2.63 (1H, td, *J* = 2.4, 10.6 Hz, H-20), 2.27 (1H, m, H-25), 1.00 (3H, H-26 or H-27), 1.01 (3H, H-27 or H-26), 4.87 (1H, br s, H-28a), 4.91 (1H, br s, H-28b), 1.05 (3H, s, H-29), 1.22 (3H, s, H-30), 1.00 (3H, s, H-31); <sup>13</sup>C NMR (75 MHz, pyridine-d<sub>5</sub>): δ 36.1 (t, C-1), 28.6 (t, C-2), 78.0 (d, C-3), 39.5 (s, C-4), 50.9 (d,

#### Chien-Chang Shen, Yuh-Chi Kuo, Ray-Ling Huang, Lie-Chwen Lin, Ming-Jaw Don, Tun-Tschu Chang and Cheng-Jen Chou

C-5), 18.7 (t, C-6), 27.5 (t, C-7), 134.3 (s, C-8), 134.3 (s, C-9), 37.4 (s, C-10), 21.2 (t, C-11), 29.4 (t, C-12), 44.9 (s, C-13), 49.9 (s, C-14), 30.9 (t, C-15), 26.8 (t, C-16), 47.7 (d, C-17), 16.3 (q, C-18), 19.4 (q, C-19), 49.1 (d, C-20), 178.6 (s, C-16), 47.7 (d, C-17), 16.3 (q, C-18), 19.4 (q, C-19), 49.1 (d, C-20), 178.6 (s, C-16), 47.7 (d, C-17), 16.3 (q, C-18), 19.4 (q, C-19), 49.1 (d, C-20), 178.6 (s, C-16), 47.7 (d, C-17), 16.3 (q, C-18), 19.4 (q, C-19), 49.1 (d, C-20), 178.6 (s, C-16), 47.7 (d, C-17), 16.3 (q, C-18), 19.4 (q, C-19), 49.1 (d, C-20), 178.6 (s, C-16), 47.7 (d, C-17), 16.3 (q, C-18), 19.4 (q, C-19), 49.1 (d, C-20), 178.6 (s, C-16), 47.7 (d, C-17), 16.3 (q, C-18), 19.4 (q, C-19), 49.1 (d, C-20), 178.6 (s, C-16), 47.7 (d, C-17), 16.3 (q, C-18), 19.4 (q, C-19), 49.1 (d, C-20), 178.6 (s, C-16), 47.7 (d, C-17), 16.3 (q, C-18), 19.4 (q, C-19), 49.1 (d, C-20), 178.6 (s, C-16), 47.7 (d, C-17), 16.3 (q, C-18), 19.4 (q, C-19), 49.1 (d, C-20), 178.6 (s, C-16), 47.7 (d, C-17), 16.3 (q, C-18), 19.4 (q, C-19), 49.1 (d, C-20), 178.6 (s, C-16), 47.7 (d, C-17), 16.3 (q, C-18), 19.4 (q, C-19), 49.1 (d, C-20), 178.6 (s, C-16), 47.7 (d, C-17), 16.3 (q, C-18), 19.4 (q, C-19), 49.1 (d, C-20), 178.6 (s, C-16), 47.7 (d, C-17), 16.3 (q, C-18), 19.4 (q, C-19), 49.1 (d, C-20), 178.6 (s, C-18), 19.4 (q, C-19), 19.4 (q, C-1

| Atom | <sup>13</sup> C | <sup>1</sup> H               | НМВС                                       |
|------|-----------------|------------------------------|--------------------------------------------|
| 1    | 29.7 <i>t</i>   | 2.09, 3.10                   | H <sub>3</sub> -19, H-3                    |
| 2    | 26.7 <i>t</i>   | 1.92, 2.73                   | H-1                                        |
| 3    | 74.7 d          | 4.06 br s                    | H-1, H-2                                   |
| 4    | 73.9 s          |                              | H <sub>3</sub> -29, H-5, H-3, H-2          |
| 5    | 43.5 d          | 2.17 br d (14.0)             | H <sub>3</sub> -19, H-6, H-3, H-1          |
| 6    | 30.1 <i>t</i>   | 2.42, 2.68                   | H-7, H-5                                   |
| 7    | 70.8 d          | 4.62 <i>t</i> (8.0)          | H-6, H-5                                   |
| 8    | 154.3 s         |                              | H-14, H-15, H-6, H-7                       |
| 9    | 143.9 <i>s</i>  |                              | H <sub>3</sub> -19, H-5, H-12, H-7, H-14   |
| 10   | 38.7 s          |                              | H <sub>3</sub> -19, H-2, H-1, H-6          |
| 11   | 201.5 s         |                              | H-12                                       |
| 12   | 58.8 t          | 2.44 d (13.4), 2.96 d (13.4) | H <sub>3</sub> -18, H-14                   |
| 13   | 47.9 s          |                              | H <sub>3</sub> -18, H-17, H-15, H-14, H-12 |
| 14   | 53.7 d          | 2.64                         | H <sub>3</sub> -18, H-12, H-7              |
| 15   | 25.4 <i>t</i>   | 2.08, 2.50                   | H-14, H-12 (2.96)                          |
| 16   | 28.2 <i>t</i>   | 1.36, 1.92                   | H-15 (2.50)                                |
| 17   | 54.8 <i>d</i>   | 1.41                         | H <sub>3</sub> -18, H-22, H-14             |
| 18   | 12.5 q          | 0.89 s                       | H-12, H-14, H-17                           |
| 19   | 20.9 q          | 2.05 s                       | H-1, H-5                                   |
| 20   | 36.2 <i>d</i>   | 1.40                         | H <sub>3</sub> -21, H-17, H-22, H-23       |
| 21   | 18.6 <i>q</i>   | 0.88 d (7.5)                 | H-22                                       |
| 22   | 34.5 <i>t</i>   | 1.29, 1.74                   | H <sub>3</sub> -21, H-23                   |
| 23   | 31.7 <i>t</i>   | 2.19, 2.39                   | H-22, H-25, H-28                           |
| 24   | 150.4 <i>s</i>  |                              | H <sub>3</sub> -27, H-23, H-25, H-28       |
| 25   | 46.7 <i>d</i>   | 3.45 <i>q</i> (7.0)          | H <sub>3</sub> -27, H-23, H-28             |
| 26   | 176.8 s         |                              | H <sub>3</sub> -27, H-25, H-28             |
| 27   | 17.2 <i>q</i>   | 1.47 d (7.0)                 | H-25                                       |
| 28   | 110.4 <i>t</i>  | 5.06 br s, 5.21 br s         | H-23, H-25                                 |
| 29   | 28.0 q          | 1.73 <i>s</i>                | H-3                                        |

Table 2. NMR spectral data of antcin K (in pyridine-d<sub>5</sub>; 500 MHz)<sup>a</sup>

<sup>a</sup>Assignments were based on <sup>13</sup>C-DEPT, <sup>1</sup>H-<sup>1</sup>H COSY, <sup>1</sup>H-<sup>13</sup>C HMQC and HMBC spectra.

C-21), 31.8 (t, C-22), 32.7 (t, C-23), 155.9 (s, C-24), 34.2 (d, C-25), 21.9 (q, C-26), 22.0 (q, C-27), 107.0 (t, C-28), 24.5 (q, C-29), 28.6 (q, C-30), 16.3 (q, C-31); EIMS (GCQ): *m/z* 471 (M+1).

### Methyl antcinate B (methyl 4α-methylergosta-8,24(28)-diene-3,7,11-trion-26-oate, 5)<sup>6</sup>

Yellow powder;  $[\alpha]_D +75.0^{\circ}$  (c 0.28, MeOH); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.40 (1H, m, H-1 $\alpha$ ), 3.04 (1H, ddd, J = 2.8, 6.6, 13.1 Hz, H-1 $\beta$ ), 2.40 (1H, m, H-2a), 2.53 (1H, m, H-2b), 2.47 (1H, m, H-4), 1.91 (1H, td, J = 4.0, 13.7 Hz, H-5), 2.41 (1H, m, H-6 $\alpha$ ), 2.53 (1H, m, H-6 $\beta$ ), 2.37 (1H, br d, J = 14.1 Hz, H-12 $\alpha$ ), 2.92 (1H, d, J = 14.1 Hz, H-12 $\beta$ ), 2.62 (1H, dd, J = 7.2, 11.7 Hz, H-14), 1.40 (1H, m, H-15a), 2.53 (1H, m, H-15b), 1.26 (1H, m, H-16a), 1.98 (1H, m, H-16b), 1.40 (1H, m, H-17), 0.67 (3H, s, H-18), 1.50 (3H, s, H-19), 1.40 (1H, m, H-20), 0.91 (3H, d, J = 3.9 Hz, H-21), 1.17 (1H, m, H-22a), 1.57 (1H, m, H-22b), 1.97 (1H, m, H-23a), 2.15 (1H, m, H-23b), 3.10 (1H, q, J = 7.2 Hz, H-25), 1.25 (3H, d, J = 7.1 Hz, H-27), 4.84 (1H, d, J = 3.0 Hz, H-28a), 4.88 (1H, d, J = 3.5 Hz, H-28b), 1.02 (3H, d, J = 6.4 Hz, H-29), 3.64 (3H, s, -COOCH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  34.7 (t, C-1), 37.5 (t, C-2), 210.6 (s, C-3), 43.9 (d, C-4), 48.9 (d, C-5), 38.9 (t, C-6), 200.7 (s, C-7), 151.9 (s, C-8), 145.5 (s, C-9), 38.3 (s, C-10), 202.5 (s, C-11), 57.3 (t, C-12), 47.1 (s, C-13), 49.3 (d, C-14), 24.8 (t, C-15), 27.8 (t, C-16), 54.0 (d, C-17), 12.0 (q, C-18), 16.2 (q, C-19), 35.6 (d, C-20), 18.5 (q, C-21), 33.8 (t, C-22), 31.2 (t, C-23), 148.5 (s, C-24), 45.7 (d, C-25), 174.9 (s, C-26), 16.4 (q, C-27), 110.9 (t, C-28), 11.4 (q, C-29), 51.8 (q, -COOCH<sub>3</sub>); APCI-MS (pos.): m/z 483 (M+1).

## Methyl antcinate H (methyl 3α,12α-dihydroxy-4α-methylergosta-8,24(28)-diene-7,11-dion-26-oate, 6)<sup>6</sup>

Yellow needles; mp 158-160 °C (MeOH);  $[\alpha]_D$  +86.9° (c 0.23, MeOH); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.43 (1H, m, H-1 $\alpha$ ), 2.34 (1H, m, H-1 $\beta$ ), 1.79 (2H, m, H-2), 3.76 (1H, d, J = 2.3 Hz, H-3), 1.72 (1H, m, H-4), 2.15 (1H, m, H-5), 2.22 (1H, m, H-6a), 2.40 (1H, m, H-6b), 4.03 (1H, s, H-12 $\beta$ ), 3.00 (1H, dd, J = 7.5, 12.4 Hz, H-14), 1.49 (1H, m, H-15a), 2.52 (1H, m, H-15b), 1.26 (1H, m, H-16a), 1.95 (1H, m, H-16b), 1.83 (1H, m, H-17), 0.62 (3H, s, H-18), 1.27 (3H, s, H-19), 1.41 (1H, m, H-20), 0.94 (3H, d, J = 5.8 Hz, H-21), 1.17 (1H, m, H-22a), 1.57 (1H, m, H-22b), 1.89 (1H, m, H-23a), 2.17 (1H, m, H-23b), 3.11 (1H, q, J = 7.0 Hz, H-25), 1.26 (3H, d, J = 7.4 Hz, H-27), 4.86 (1H, d, J = 3.6 Hz, H-28a), 4.88 (1H, d, J = 4.3 Hz, H-28b), 0.92 (3H, d, J = 6.5 Hz, H-29), 3.65 (3H, s, -COOCH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  27.8 (t, C-1), 28.9 (t, C-2), 70.3 (d, C-3), 34.5 (d, C-4), 40.7 (d, C-5), 38.1 (t, C-6), 201.6 (s, C-7), 144.6 (s, C-8), 152.2 (s, C-9), 38.3 (s, C-10), 202.5 (s, C-11), 80.8 (d, C-12), 49.5 (s, C-13), 41.8 (d, C-14), 23.9 (t, C-15), 26.9 (t, C-16), 45.6 (d, C-17 or C-25), 11.5 (q, C-18), 16.1 (q, C-19 or C-27), 35.4 (d, C-20), 17.9 (q, C-21), 33.9 (t, C-22), 31.4 (t, C-23), 148.6 (s, C-24), 45.7 (d, C-25 or C-17), 175.0 (s, C-26), 16.3 (q, C-27 or C-19), 110.9 (t, C-28), 15.6 (q, C-29), 51.9 (q, -COOCH<sub>3</sub>).

#### Zhankuic acid A (4 $\alpha$ -methylergosta-8, 24(28)-diene-3,7,11-trion-26-oic acid, 7)<sup>4</sup>

Yellow needles; mp 135-137 °C (hexane/acetone);  $[\alpha]_D$  +54.3° (c 0.35, MeOH); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.41 (1H, m, H-1 $\alpha$ ), 3.05 (1H, ddd, J = 2.8, 6.6, 13.1 Hz, H-1 $\beta$ ), 2.41 (1H, m, H-2a), 2.50 (1H, m, H-2b), 2.48 (1H, m, H-4), 1.90 (1H, td, J = 4.0, 13.7 Hz, H-5), 2.44 (1H, m, H-6 $\alpha$ ), 2.52 (1H, m, H-6 $\beta$ ), 2.39 (1H, br d, J = 14.0 Hz, H-12 $\alpha$ ), 2.92 (1H, d, J = 14.0 Hz, H-12 $\beta$ ), 2.63 (1H, dd, J = 7.1, 11.9 Hz, H-14), 1.41 (1H, m, H-15a), 2.53 (1H, m, H-26), 2.53 (1H, m, H-26)

15b), 1.26 (1H, m, H-16a), 1.98 (1H, m, H-16b), 1.41 (1H, m, H-17), 0.68 (3H, s, H-18), 1.51 (3H, s, H-19), 1.41 (1H, m, H-20), 0.92 (3H, d, *J* = 5.7 Hz, H-21), 1.18 (1H, m, H-22a), 1.55 (1H, m, H-22b), 1.97 (1H, m, H-23a), 2.15 (1H, m, H-23b), 3.13 (1H, q, *J* = 7.1 Hz, H-25), 1.28 (3H, d, *J* = 7.0 Hz, H-27), 4.90 (1H, d, *J* = 2.4 Hz, H-28a), 4.96 (1H, br s, H-28b), 1.02 (3H, d, *J* = 6.6 Hz, H-29); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): δ 34.7 (t, C-1), 37.5 (t, C-2), 210.6 (s, C-3), 43.9 (d, C-4), 48.9 (d, C-5), 38.9 (t, C-6), 200.7 (s, C-7), 145.5 (s, C-8), 151.9 (s, C-9), 38.3 (s, C-10), 202.5 (s, C-11), 57.3 (t, C-12), 47.1 (s, C-13), 49.3 (d, C-14), 24.8 (t, C-15), 27.8 (t, C-16), 54.0 (d, C-17), 11.9 (q, C-18), 16.2 (q, C-19), 35.6 (d, C-20), 18.4 (q, C-21), 33.7 (t, C-22), 31.3 (t, C-23), 148.0 (s, C-24), 45.5 (d, C-25), 179.7 (s, C-26), 16.1 (q, C-27), 111.4 (t, C-28), 11.4 (q, C-29); ESI-MS (neg.): *m/z* 467 (M–1).

#### Zhankuic acid B ( $3\alpha$ -hydroxy- $4\alpha$ -methylergosta-8,24(28)-diene-7,11-dion-26-oic acid) (8)<sup>4</sup>

Pale yellow needles; mp 187-190 °C (dil. MeOH);  $[\alpha]_D +23.1^\circ$  (c 0.26, MeOH); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ 1.40 (1H, m, H-1 $\alpha$ ), 2.50 (1H, m, H-1 $\beta$ ), 1.70 (1H, m, H-2a), 1.80 (1H, m, H-2b), 3.77 (1H, d, J = 2.4 Hz, H-3), 1.72 (1H, m, H-4), 2.13 (1H, td, J = 2.9, 14.8 Hz, H-5), 2.39 (1H, dd, J = 2.8, 15.1 Hz, H-6 $\alpha$ ), 2.23 (1H, t, J = 14.7 Hz, H-6 $\beta$ ), 2.38 (1H, br d, J = 13.5 Hz, H-12 $\alpha$ ), 2.87 (1H, d, J = 13.5 Hz, H-12 $\beta$ ), 2.61 (1H, dd, J = 7.5, 11.9 Hz, H-14), 1.40 (1H, m, H-15a), 2.50 (1H, m, H-15b), 1.25 (1H, m, H-16a), 1.98 (1H, m, H-16b), 1.40 (1H, m, H-17), 0.65 (3H, s, H-18), 1.29 (3H, s, H-19), 1.40 (1H, m, H-20), 0.91 (3H, d, J = 5.4 Hz, H-21), 1.18 (1H, m, H-22a), 1.57 (1H, m, H-22b), 1.95 (1H, m, H-23a), 2.16 (1H, m, H-23b), 3.13 (1H, q, J = 7.1 Hz, H-25), 1.27 (3H, d, J = 7.0 Hz, H-27), 4.89 (1H, br s, H-28a), 4.95 (1H, br s, H-28b), 0.94 (3H, d, J = 6.8 Hz, H-29); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  27.8 (t, C-1), 29.0 (t, C-2), 70.3 (d, C-3), 34.5 (d, C-4), 41.0 (d, C-5), 38.0 (t, C-6), 202.3 (s, C-7), 144.6 (s, C-8), 153.7 (s, C-9), 38.7 (s, C-10), 202.9 (s, C-11), 57.5 (t, C-12), 47.3 (s, C-13), 49.5 (d, C-14), 24.9 (t, C-15), 27.8 (t, C-16), 53.9 (d, C-17), 11.9 (q, C-18), 16.2 (q, C-19 or C-27), 35.6 (d, C-20), 18.5 (q, C-21), 33.9 (t, C-22), 31.2 (t, C-23), 148.1 (s, C-24), 45.5 (d, C-25), 179.3 (s, C-26), 15.9 (q, C-27 or C-19), 111.3 (t, C-28), 15.9 (q, C-29), APCI-MS (neg.): m/z 469 (M–1).

### Dehydrosulphurenic acid (24-methylenelanosta-7,9(11)-diene-3β,15α-diol-21-oic acid, 9)<sup>8</sup>

White powder;  $[\alpha]_D$  +60.0° (c 0.25, MeOH); <sup>1</sup>H NMR (300 MHz, pyridine-d<sub>5</sub>):  $\delta$  1.90 (2H, m, H-2), 3.43 (1H, t, J = 7.6 Hz, H-3), 1.32 (1H, m, H-5), 2.16 (2H, m, H-6), 6.48 (1H, br s, H-7), 5.39 (1H, d, J = 6.0 Hz, H-11), 2.37 (1H, H-12 $\beta$ ) 2.70 (1H, H-12 $\alpha$ ), 4.75 (1H, dd, J = 5.9, 9.3 Hz, H-15), 1.09 (3H, s, H-18), 1.10 (3H, s, H-19), 2.23 (1H, H-25), 1.01 (3H, d, J = 6.8 Hz, H-26), 0.99 (3H, d, J = 6.8 Hz, H-27), 4.85 (1H, br s, H-28a), 4.88 (1H, br s, H-28b), 1.42 (3H, s, H-29), 1.17 (3H, s, H-30), 1.12 (3H, s, H-31); <sup>13</sup>C NMR (75 MHz, pyridine-d<sub>5</sub>):  $\delta$  36.9 (t, C-1), 28.7 (t, C-2), 78.0 (d, C-3), 39.4 (s, C-4), 49.8 (d, C-5), 23.6 (t, C-6), 122.3 (d, C-7), 142.0 (s, C-8), 147.1 (s, C-9), 38.0 (s, C-10), 116.3(d, C-11), 36.5 (t, C-12), 45.0 (s, C-13), 52.6 (s, C-14), 73.8 (d, C-15), 39.6 (t, C-16), 46.5 (d, C-17), 16.9 (q, C-18), 23.1 (q, C-19), 48.9 (d, C-20), 178.6 (s, C-21), 32.8 (t, C-22), 31.9 (t, C-23), 155.9 (s, C-24), 34.3 (d, C-25), 21.9

(q, C-26), 22.0 (q, C-27), 107.1 (t, C-28), 18.3 (q, C-29), 28.8 (q, C-30), 16.6 (q, C-31); APCI-MS (pos.): *m/z* 485 (M+1).

### Sulphurenic acid (24-methylenelanosta-8-ene-3β,15α-diol-21-oic acid, 10)<sup>9</sup>

White powder; mp 246-248 °C (MeOH);  $[\alpha]_D$  +36.4° (c 0.22, MeOH); <sup>1</sup>H NMR (300 MHz, pyridine-d<sub>3</sub>): δ 3.41 (1H, dd, J = 7.0, 8.3 Hz, H-3), 4.61 (1H, dd, J = 6.2, 8.9 Hz, H-15), 1.05 (3H, s, H-18), 1.05 (3H, s, H-19), 1.00 (3H, d, J = 6.9 Hz, H-26), 0.99 (3H, d, J = 6.8 Hz, H-27), 4.84 (1H, br s, H-28a), 4.87 (1H, br s, H-28b), 1.34 (3H, s, H-29), 1.20 (3H, s, H-30), 1.17 (3H, s, H-31); <sup>13</sup>C NMR (75 MHz, pyridine-d<sub>5</sub>): δ 36.2 (t, C-1), 28.7 (t, C-2), 78.1 (d, C-3), 39.3 (s, C-4), 50.9 (d, C-5), 18.9 (t, C-6), 27.7 (t, C-7), 134.9 (s, C-8), 135.2 (s, C-9), 37.3 (s, C-10), 21.2 (t, C-11), 30.2 (t, C-12), 45.2 (s, C-13), 52.2 (s, C-14), 72.5 (t, C-15), 39.5 (t, C-16), 46.7 (d, C-17), 16.9 (q, C-18), 19.4 (q, C-19), 49.0 (d, C-20), 178.7 (s, C-21), 31.9 (t, C-22), 32.7 (t, C-23), 155.9 (s, C-24), 34.2 (d, C-25), 21.9 (q, C-26), 22.0 (q, C-27), 107.1 (t, C-28), 18.1 (q, C-29), 28.6 (q, C-30), 16.3 (q, C-31); APCI-MS (pos.): *m/z* 467 (M+1).

### 15α-Acetyl-dehydrosulphurenic acid (15α-acetoxy-24-methylenelanosta-7,9(11)-dien-3βol-21-oic acid, 11)<sup>8</sup>

White needless;  $[\alpha]_D +57.1^{\circ}$  (c 0.21, MeOH); <sup>1</sup>H NMR (300 MHz, pyridine-d<sub>5</sub>):  $\delta$  3.44 (1H, t, *J* = 6.5 Hz, H-3), 5.85 (1H, d, *J* = 5.8 Hz, H-7), 5.37 (1H, d, *J* = 6.0 Hz, H-11), 5.48 (1H, dd, *J* = 5.5, 9.6 Hz, H-15), 1.05 (3H, s, H-18), 1.09 (3H, s, H-19), 2.23 (1H, H-25), 1.02 (3H, d, *J* = 6.8 Hz, H-26), 1.00 (3H, d, *J* = 6.8 Hz, H-27), 4.85 (1H, br s, H-28a), 4.88 (1H, br s, H-28b), 1.04 (3H, s, H-29), 1.56 (3H, s, H-30), 1.05 (3H, s, H-31), 2.15 (3H, s, - OCOC*H*<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, pyridine-d<sub>5</sub>):  $\delta$  36.3 (t, C-1), 28.7 (t, C-2), 78.1 (d, C-3), 39.3 (s, C-4), 49.6 (d, C-5), 23.6 (t, C-6), 122.3 (d, C-7), 140.9 (s, C-8), 146.7 (s, C-9), 38.0 (s, C-10), 116.5 (d, C-11), 36.6 (t, C-12), 44.8 (s, C-13), 51.7 (s, C-14), 77.4 (d, C-15), 36.4 (t, C-16), 46.3 (d, C-17), 16.6 (q, C-18), 23.0 (q, C-19), 48.7 (d, C-20), 178.3 (s, C-21), 32.7 (t, C-22), 31.9 (t, C-23), 155.8 (s, C-24), 34.3 (d, C-25), 21.9 (q, C-26), 22.0 (q, C-27), 107.2 (t, C-28), 18.9 (q, C-29), 28.9 (q, C-30), 16.6 (q, C-31), 170.9 (s, -OCOCH<sub>3</sub>), 21.3 (q, -OCOCH<sub>3</sub>); APCI-MS (pos.): m/z 527 (M+1).

#### Versisponic acid D (15α-acetoxy-24-methylenelanosta-8-en-3β-ol-21-oic acid, 12)<sup>9</sup>

White needless;  $[\alpha]_D + 61.5^\circ$  (c 0.26, MeOH); <sup>1</sup>H NMR (300 MHz, pyridine-d<sub>5</sub>):  $\delta$  1.18 (1H, m, H-1a), 1.60 (1H, m, H-1b), 3.42 (1H, dd, J = 7.0, 8.3 Hz, H-3), 1.14 (1H, m, H-5), 1.50 (1H, m, H-6a), 1.72 (1H, m, H-6b), 2.08 (1H, m, H-7a), 2.26 (1H, m, H-7b), 1.88 (1H, m, H-11a), 1.98, (1H, m, H-11b), 1.90 (1H, m, H-12a), 2.09 (1H, m, H-12b), 5.41 (1H, dd, J = 5.5, 9.6 Hz, H-15), 1.92 (1H, m, H-16a), 2.37 (1H, m, H-16b), 2.60 (1H, m, H-17), 1.12 (3H, s, H-18), 1.01 (3H, s, H-19), 2.56 (1H, m, H-20), 1.78 (1H, m, H-22a), 2.00 (1H, m, H-22b), 2.24 (1H, m, H-23a), 2.39 (1H, m, H-23b), 2.24 (1H, m, H-25), 1.01 (3H, d, J = 6.8 Hz, H-26), 1.00 (3H, d, J = 6.8 Hz, H-27), 4.87 (1H, br s, H-28a),

#### Chien-Chang Shen, Yuh-Chi Kuo, Ray-Ling Huang, Lie-Chwen Lin, Ming-Jaw Don, Tun-Tschu Chang and Cheng-Jen Chou

4.89 (1H, br s, H-28b), 1.20 (3H, s, H-29), 1.22 (3H, s, H-30), 1.04 (3H, s, H-31), 2.13 (3H, s, -OCOCH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, pyridine-d<sub>5</sub>): δ 36.1 (t, C-1), 28.6 (t, C-2), 78.1 (d, C-3), 39.6 (s, C-4), 50.8 (d, C-5), 18.6 (t, C-6), 26.9 (t, C-7), 133.1 (s, C-8), 136.3 (s, C-9), 37.6 (s, C-10), 21.1 (t, C-11), 29.6 (t, C-12), 45.3 (s, C-13), 51.3 (s, C-14), 76.0 (t, C-15), 36.1 (t, C-16), 46.6.(d, C-17), 16.7 (q, C-18), 19.4 (q, C-19), 48.9 (d, C-20), 178.4 (s, C-21), 31.9 (t, C-22), 32.7 (t, C-23), 155.9 (s, C-24), 34.3 (d, C-25), 21.9 (q, C-26), 22.0 (q, C-27), 107.1 (t, C-28), 18.7 (q, C-29), 28.7 (q, C-30), 16.3 (q, C-31), 170.8 (s, -OCOCH<sub>3</sub>), 21.3 (q, -OCOCH<sub>3</sub>); APCI-MS (neg.): *m/z* 527 (M–1).



 $3\beta$ ,  $15\alpha$ -Dihydroxylanosta-7,9(11), 24-trien-21-oic acid (1)



Antcin K (2):  $R_1 = (\alpha - OH)$ ,  $R_2 = R_3 = (\beta - OH)$ ,  $R_4 = H$ ,  $R_5 = H$ Zhankuic acid A (7):  $R_1 = R_3 = (=O)$ ,  $R_2 = H$ ,  $R_4 = H$ ,  $R_5 = H$ Zhankuic acid B (8):  $R_1 = (\alpha - OH)$ ,  $R_2 = H$ ,  $R_3 = (=O)$ ,  $R_4 = H$ ,  $R_5 = H$ Zhankuic acid C (13):  $R_1 = R_4 = (\alpha - OH)$ ,  $R_2 = H$ ,  $R_3 = (=O)$ ,  $R_5 = H$ Methyl antcinate B (5):  $R_1 = R_3 = (=O)$ ,  $R_2 = H$ ,  $R_4 = H$ ,  $R_5 = CH_3$ Methyl antcinate H (6):  $R_1 = R_4 = (\alpha - OH)$ ,  $R_2 = H$ ,  $R_3 = (=O)$ ,  $R_5 = CH_3$ 



Dehydroeburicoic acid (**3**): R=H Dehydrosulphurenic acid (**9**): R=OH 15α-Acetyl-dehydrosulphurenic acid (**11**): R=OAc



2,2',5,5'-Tetramethoxy-3,4,3',4'-bis(methylenedioxy)-6,6'-dimethylbiphenyl (14)



Eburicoic acid (4): R=H Sulphurenic acid (10): R=OH Versisponic acid D (12): R=OAc

Fig. 1. Structures of fourteen compounds isolated from the fruit-body of Antrodia camphorata.

#### Zhankuic acid C (3α,12α-dihydroxy-4α-methylergosta-8,24(28)-diene-7,11-dion-26-oic acid, 13)<sup>4</sup>

Yellow fine needles; mp 170-173 °C (dil. MeOH);  $[\alpha]_D$  +71.4° (c 0.28, MeOH); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  3.77 (1H, br s, H-3), 4.02 (1H, s, H-12 $\beta$ ), 2.98 (1H, dd, *J* = 7.5, 12.0 Hz, H-14), 0.61 (3H, s, H-18), 1.26 (3H, s, H-19), 0.91 (3H, d, *J* = 6.3 Hz, H-29), 3.15 (1H, q, *J* = 7.1 Hz, H-25), 1.27 (3H, d, *J* = 7.0 Hz, H-27), 4.90 (1H, br s, H-28a), 4.95 (1H, br s, H-28b), 0.91 (3H, d, *J* = 6.3 Hz, H-29); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  27.7 (t, C-1), 28.8 (t, C-2), 70.3 (d, C-3), 34.5 (d, C-4), 40.7 (d, C-5), 38.1 (t, C-6), 201.8 (s, C-7), 144.8 (s, C-8), 152.3 (s, C-9), 38.3 (s, C-10), 202.9 (s, C-9), 50.5 (s, C-9), 50.5 (s, C-9), 50.5 (s, C-10), 202.9 (s, C-9), 50.5 (s, C-10), 202.9 (s, C-10),

C-11), 80.7 (d, C-12), 49.6 (s, C-13), 41.9 (d, C-14), 23.9 (t, C-15), 26.9 (t, C-16), 45.6 (d, C-17 or C-25), 11.4 (q, C-18), 16.1 (q, C-19 or C-27), 35.4 (d, C-20), 17.9 (q, C-21), 33.7 (t, C-22), 30.9 (t, C-23), 148.0 (s, C-24), 45.7 (d, C-25 or C-17), 179.5 (s, C-26), 15.9 (q, C-27 or C-19), 111.4 (t, C-28), 15.6 (q, C-29); EIMS (GCQ, pos.): *m/z* 487 (M+1).

### 2,2',5,5'-Tetramethoxy-3,4,3',4'-bis(methlylenedioxy)-6,6'-dimethylbiphenyl (14)<sup>5</sup>

White crystal; mp 144-146 °C (MeOH); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ 5.94 (4H, s), 3.90 (6H, s), 3.71 (6H, s), 1.77 (6H, s); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): δ 137.86 (s), 137.28 (s), 136.84 (s,), 136.49 (s), 123.11 (s), 101.03 (t), 59.85 (q); APCI-MS (pos.): *m*/z 391 (M+1).

# **RESULTS AND DISCUSSION**

A concentrated ethanol extract of the fruiting bodies of *A. camphorata* was taken in dichloromethane, and the soluble part was concentrated and chromatographed to give one biphenyl, six ergostanes, and seven lanostanes. By analysis of their physical and spectral properties (mp,  $[\alpha]$ , MS, <sup>1</sup>H and <sup>13</sup>C NMR spectra), twelve known compounds were identified as dehydroeburicoic acid (24-methylenelanosta-7,9(11)-dien-3β-ol-21-oic acid, **3**),<sup>8</sup> eburicoic acid (24-methylenelanosta-7,9(11)-dien-3β-ol-21-oic acid, **3**),<sup>8</sup> eburicoic acid (24-methylenelanosta-8,9-ol-21-oic acid, **4**),<sup>10</sup> methyl antcinate B (methyl 4α-methylergosta-8,24(28)-diene-3,7,11-trion-26-oate, **5**),<sup>6</sup> methyl antcinate H (methyl 3α,12α-dihydroxy-4α-methylergosta-8,24(28)-diene-7,11-dion-26-oate, **6**),<sup>6</sup> zhankuic acid A (4α-methylergosta-8,24(28)-diene-3,7,11-trion-26-oic acid, **7**),<sup>4</sup> zhankuic acid B (3α-hydroxy-4α-methylergosta-8,24(28)-diene-7,11-dion-26-oic acid, **8**),<sup>4</sup> dehydrosulphurenic acid (24-methylenelanosta-7,9(11)-dien-3β-ol-21-oic acid, **10**),<sup>9</sup> 15α-acetyl-dehydrosulphurenic acid (15α-acetoxy-24-methylenelanosta-7,9(11)-dien-3β-ol-21-oic acid, **11**),<sup>8</sup> versisponic acid D (15α-acetoxy-24-methylenelanosta-8-en-3β-ol-21-oic acid, **12**),<sup>9</sup> zhankuic acid C (3α,12α-dihydroxy-4α-methylergosta-8,24(28)-diene-7,11-dion-26-oic acid, **13**),<sup>4</sup> and 2,2',5,5'-tetramethoxy-3,4,3',4'-bis(methylenedioxy)-6,6'-dimethylbiphenyl (**14**).<sup>5</sup>

Compound **1** was obtained as fine needles, mp 259-261 °C (dil. MeOH), [ $\alpha$ ] +83.3 (c 0.3, MeOH); its molecular formula C<sub>30</sub>H<sub>46</sub>O<sub>4</sub> was determined by HRMS, which showed the molecular ion at *m*/z 470.4315. Compared with dehydrosulphurenic acid, compound **1** lacked one carbon and two hydrogens. Its <sup>1</sup>H and <sup>13</sup>C NMR spectra were similar to those of dehydrosulphurenic acid except the region of the long side chain on D-ring. Compound **1** showed an olefinic proton at  $\delta_{\rm H}$  5.28 instead of  $\delta_{\rm H}$  4.84 and 4.88 methylene signals in dehydrosulphurenic acid. Besides, two doublets at  $\delta_{\rm H}$  0.99 and 0.98 from the methyl groups (H-26 and H-27) of isopropyl in dehydrosulphurenic acid disappeared and two singlets at  $\delta_{\rm H}$  1.63 (3H) and 1.58 (3H) were observed in **1**, which indicated that there existed an internal double bond between C-24 and C-25. The complete analysis of NMR spectra (<sup>1</sup>H, <sup>13</sup>C, DEPT, HMQC, and

HMBC) is shown in Table 1. From these spectral data, **1** was established as  $3\beta$ ,  $15\alpha$ -dihydroxylanosta-7,9(11), 24-trien-21-oic acid.

Compound **2** was also obtained as white needles, mp 227-230 °C (dil. MeOH), [ $\alpha$ ] +92.0 (c 0.25, MeOH); its EIMS (ESI, neg.) showed [M-1]<sup>-</sup> at *m*/*z* 487 and HRMS showed a molecular ion peak at *m*/*z* 488.3133, which was analyzed for C<sub>29</sub>H<sub>44</sub>O<sub>6</sub>. The <sup>1</sup>H and <sup>13</sup>C NMR spectra of **2** were similar to those of zhankuic acid B; however, compound **2** showed a triplet at  $\delta_{\rm H}$  4.62 (1H), which was correlated to  $\delta_{\rm C}$  70.8 in HMQC and to C-6, C-8, C-9, and C-14 in HMBC spectra. This revealed that a hydroxyl group was attached to the methine of C-7. Moreover, a signal at  $\delta_{\rm C}$  73.9 correlated to H-2, H-3, H-5, and H-29 in HMBC spectrum indicated that another hydroxyl group was attached to C-4. The stereochemistry of C-4 and C-7 was established by NOESY experiment. Cross peaks between H-29 and H-3, H-5 in NOESY spectrum indicated that the methyl group at C-4 was in  $\alpha$  position. In addition, the  $\alpha$  configuration of H-7 ( $\delta$  4.62, t, *J* = 8.0 Hz) was confirmed by cross peaks between H-7 and H-5, H-6 $\alpha$ . Table 2 shows the complete analysis of NMR spectra (<sup>1</sup>H, <sup>13</sup>C, DEPT, HMQC, and HMBC). The structure of **2** was thus determined to be  $3\alpha_{4}\beta_{3}\beta_{5}$ +trihydroxy-4 $\alpha$ -methylergosta-8,24(28)-dien-11-on-26-oic acid, and named as antcin K.

# ACKNOWLEDGMENT

The authors thank the National Science Council of the Republic of China for financial support (NSC 90-2113-M-077-004).

# REFERENCES

- 1. Wu SH, Ryvarden L, Chang TT. *Antrodia camphorata* (niu-chang-chih), new combination of a medicinal fungus in Taiwan. Bot. Bull. Acad. Sin. 38: 273-275, 1997.
- 2. Tsai ZT, Liaw SL. The use and the effect of Ganoderma. Sheng-Yun Publishers, Inc., Taichung, Taiwan, 1982.
- Cherng IH, Chiang HC, Cheng MC, Wang Y. Three new triterpenoids from *Antrodia cinnamomea*. J. Nat. Prod. 58: 365-371, 1995.
- Chen CH, Yang SW, Shen YC. New steroid acids from *Antrodia cinnamomea*, a fungal parasite of *Cinnamomum micrantham*. J. Nat. Prod. 58: 1655-1661, 1995.
- 5. Chiang HC, Wu DP, Cherng IW, Ueng CH. A sesquiterpene lactone, phenyl and biphenyl compounds from *Antrodia cinnamomea*. Phytochemistry, 39: 613-616, 1995.
- 6. Wu DP, Chiang HC. Constituents of Antrodia cinnamomea. J. Chin. Chem. Soc. 42: 797-800, 1995.
- 7. Cherng IH, Wu DP, Chiang HC. Triterpenoids from Antrodia cinnamomea. Phytochemistry, 41: 263-267, 1996.
- Yang SW, Shen YC, Chen CH. Steroids and triterpenoids of *Antrodia cinnamomea* a fungus parasitic on *Cinnamomum micranthum*. Phytochemistry, 41: 1389-1392, 1996.
- 9. Yoshikawa K, Matsumoto K, Mine C, Bando S, Arihara S. Five lanostane triterpenoids and three saponins from

the fruit body of Laetiporus versisporus. Chem. Pharm. Bull. 48: 1418-1421, 2000.

10. Tai T, Akahori A, Shingu T. Triterpenes of Poria cocos Phytochemistry, 32: 1239-1244, 1993.

J Chin Med 14(4): 247-258, 2003

# 牛樟芝成分之研究

沈建昌<sup>1</sup> 郭育綺<sup>1,2</sup> 黃瑞齡<sup>1</sup> 林麗純<sup>1</sup> 董明兆<sup>1</sup> 張東柱<sup>3</sup> 周正仁<sup>1</sup> <sup>1</sup>國立中國醫藥研究所

#### 2輔仁大學生命科學研究所

3農委會林業試驗所森林保護系

### 台北,台灣

(2003年9月3日受理, 2003年10月7日收校訂稿, 2003年11月11日接受刊載)

樟薄孔菌 (*Antrodia camphorata*)又名牛樟芝或樟芝,為台灣特有真菌,生長在台灣本土 特有牛樟樹 (*Cinnamomum kanehirae*)上,民間傳頌牛樟芝具有藥食物中毒之解毒作用,亦可 治療腹瀉、肚子痛,高血壓,皮膚癢,及肝癌等。經本次實驗研究,從牛樟芝子實體酒精抽取 物分離出 四種成分,分別為  $3\beta$ ,15 $\alpha$ -dihydroxylanosta-7,9(11),24-trien-21-oic acid、antcin K、 dehydroeburicoic acid、eburicoic acid、methyl antcinate B、methyl antcinate H、zhankuic acid A、 zhankuic acid B、dehydrosulphurenic acid、sulphurenic acid、 $15\alpha$ -acetyl-dehydrosulphurenic acid、versisponic acid D、zhankuic acid C、和 2,2',5,5'-tetramethoxy-3,4,3',4'-bis(methylenedioxy)-6,6'dimethylbiphenyl。其中四種成分  $3\beta$ ,15 $\alpha$ -dihydroxylanosta-7,9(11),24-trien-21-oic acid (1)、antcin K (2)、sulphurenic acid 及 versisponic acid D,係首次從牛樟芝獲得,成分 1 及 2 兩種更是首次在 天然物界發現。

關鍵詞:牛樟芝,真菌,麥角甾酸,羊毛甾酸,雙苯環類。

聯絡人:周正仁,國立中國醫藥研究所,電話:02-28201999 轉 7101,傳真:02-28264276, E-mail: choucj@cma23.nricm.edu.tw。