CONSTITUENTS FROM THE STEMS OF ECDYSANTHERA ROSEA

Lie-Chwen Lin, Ling-Ling Yang, and Cheng-Jen Chou

National Research Institute of Chinese Medicine, Taipei, Taiwan (Received 1th July 2002, revised Ms received 16th July 2002, accepted 18th July 2002)

Six components were isolated from the stems of *Ecdysanthera rosea*. On the basis of spectra analysis, they were identified as 5-*O*-caffeoylquinic acid (1), methyl 5-*O*-caffeoyl quinate (2), butyl 5-*O*-caffeoyl quinate (3), scopoletin (4), β -sitisterol (5), and β -sitisterol glycoside (6). 5-*O*-caffeoylquinic acid (1) is the major component. Compounds 2 and 3 are methyl and butyl ester of 1, respectively, probably artifacts formed during the isolation.

Key words: Ecdysanthera rosea, Apocynaceae, 5-O-caffeoylquinic acid, Scopoletin.

INTRODUCTION

Ecdysanthera rosea Hook. & Arn. (Apocynaceae) is a large climbing shrub scattered in forests at low altitudes of Taiwan.¹ Its roots, stems and leaves have been used as anti-inflammatory, antibacterial, antipyretic and anti-hepatitis agents in Taiwan folk medicine.²⁻⁴ Previous work included isolation of tartaric acid, malic acid, phytosterol, triterpenoid, and saponine.^{5, 6} In the present study, caffeoyl derivatives and scopoletin were isolated from the aerial parts of *E. rosea* and their structures were elucidated.

RESULTS AND DISCUSSION

The EtOH extract of *E. rosea* was partitioned successively with *n*-hexane, EtOAc, *n*-BuOH, and H₂O. Chromatography of the EtOAc and *n*-BuOH extracts yielded six components, including 5-*O*-caffeoylquinic acid (1), methyl 5-*O*-caffeoyl quinate (2), butyl 5-*O*-caffeoyl quinate (3), scopoletin (4), β -sitisterol (5), and β -sitisterol glycoside (6). The structures of these compounds elucidated from their spectra data and by comparison with the authentic samples.

Compound 1 was a caffeoyl quinic acid. It gave an $[M+H]^+$ ion peak at m/z 355 in the ESI mass spectrum. The

Correspondence to: Lie-Chwen Lin, National Research Institute of Chinese Medicine, Tel: 02-8201999 ext. 8341, Fax: 02-28264276, E-mail: lclin@cma23.nricm.edu.tw

occurrence of caffeoyl function in the molecule was easily deduced from analysis of the ¹H-NMR and ¹³C NMR (see Experimental) spectra. In the ¹³C NMR spectrum, two methylene carbons (δ 38.3, 38.9), three methine carbons bearing an oxygen function (δ 71.4, 72.0, 73.6) and a quaternary carbon atom (δ 76.3), together with a carboxyl signal (δ 177.3) were belong to the quinic acid molecular. In the ¹H NMR spectrum, a multiplet signal (δ 5.34) due to methine bearing a caffeoyl group was observed in the lowfield, while two methines (δ 4.17, 3.73) free from a caffeoyl group appeared in the upfield. In the ¹H-COSY spectra, the cross peaks indicated that the H-4 was at δ 3.73. Therefore, **1** may be 5- or 3-*O*-caffeoylquinic acid. Compared with the literature data ^{7.8}, **1** was in agreement with 5-*O*-caffeoylquinic acid.

The ¹H- and ¹³C-NMR spectra of **2** and **3** were similarly to those of **1**, respectively, except for the additional ester methyl group and ester butyl group. ESIMS of **2** and **3** showed a quasi-molecular ion $[M+H]^+$ at m/z 369 and 411, respectively, also confirmed the above assignments. Therefore, the structure of **2** and **3** were identified to methyl 5-*O*-caffeoyl quinate and butyl 5-*O*-caffeoyl quinate, respectively. Compounds **2** and **3** are probably artifacts formed during the isolation.

Compound **4**, a yellow needle, had mp 208-210°C from EtOAc. The ¹H NMR spectrum of **4** displayed a pair of one-proton doublets at δ 6.18 (J = 9.5 Hz, H-3) and 7.83 (H-4), two aromatic protons at δ 6.75 (s, H-8) and 7.09 (s, H-5), and a methoxyl signal at δ 3.90 (s, H-3). These data together with the IR spectrum with peaks at 1700 cm ⁻¹ (δ -lactone) and 1620, 1610, 1560 cm ⁻¹ (aromatic C = C stretch) support that **4** is a coumarin. ESIMS of **4** showed a quasi-molecular ion [M+H] ⁺ at *m*/*z* 193. From an nOe experiment, the MeO (δ 3.90) and H-4 (δ 7.83) signals were enhanced when irradiated at δ 7.09 (H-5). This phenomenon indicated that the OMe group was attached at C-6. Based on the above-mentioned and compared with the authentic sample, ⁹ **4** was determined as scopoletin.

EXPERIMENTAL

General Method

Melting points were determined with a Yanagimoto micro-melting point apparatus and are uncorrected. IR spectra were obtained as KBr pellets on a Perkin-Elmer 781 IR spectrometer. UV spectra were obtained on a Hitachi U-3200 spectrophotometer in MeOH.¹ H, ¹³C and 2D NMR spectra were measured with a Varian Inova-500 spectrometer with deuterated solvent as internal standard. APCIMS and ESIMS were recorded on a Finnigan LCQ spectrometer.

Plant Material

The stems of *Ecdysanthera rosea* were collected at Shihting, Taipei, Taiwan, in October 1999. A voucher specimen (No. 222478) has been deposited in the herbarium of the Department of Botany of the National Taiwan University.

Extraction and Isolation

The air-dried stems of *E. rosea* (6.9 Kg) were extracted with 95% EtOH (40 L × 3). A solvent was evaporated *in vacuo* at ca. 50 °C. The concentrated extract was partitioned in succession between H₂O and EtOAc, followed by *n*-BuOH, respectively. The *n*-BuOH extract (170 g) was subjected to Sephadex LH-20 CC with a gradient of MeOH in H₂O and 5 fractions (1-5) were collected. Fraction 4 was repeatedly rechromatographed over Sephadex LH-20, eluting with MeOH to give compound **1** (728.7 mg), **2** (196.9 mg) and **3** (484.0 mg). The EtOAc extract (300 g) was subjected to Si gel CC with a gradient of EtOAc in *n*-hexane and 10 fractions (I-X) were collected. Fraction II was further purified by silica gel column (EtOAc/*n*-hexane) to give β -sitosterol (**5**, 813.7 mg). Fraction VII was further purified by Sephadex LH-20 column (MeOH) to give **4** (113.5 mg) and β -sitosterol glycoside (**6**, 804.2 mg).

5-*O***-Caffeoylquinic acid** (1)

Brown granules from MeOH-H₂O, mp 206-208 °C; IR (KBr) v max 3335, 1709, 1635, 1598, 1514, 1283 cm⁻¹; ¹H NMR (CD₃OD): δ 2.04 - 2.21 (4H, *m*, H₂-2 and H₂-6), 3.73 (1H, *dd*, *J* = 2.5, 8.0 Hz, H-4), 4.17 (1H, *br s*, H-3), 5.34 (1H, *m*, H-5), 6.27 (1H, *d*, *J* = 16.0 Hz, H-8'), 6.79 (1H, *d*, *J* = 8.5 Hz, H-5'), 6.87 (1H, *dd*, *J* = 2.0, 8.5 Hz, H-6'), 7.05 (1H, *d*, *J* = 2.0 Hz, H-2'), 7.57 (1H, *d*, *J* = 16.0 Hz, H-7'); ¹³C NMR (CD₃OD): δ 38.3, 38.9 (C-2/6), 71.4 (C-3), 72.0 (C-5), 73.6 (C-4), 76.3 (C-1), 115.2 (C-8'), 115.3 (C-2'), 116.5 (C-5'), 123.0 (C-6'), 127.8 (C-1'), 146.8 (C-3'), 147.1 (C-7'), 149.6 (C-4'), 168.7 (C-9'), 177.3 (C-7); ESIMS *m/z* 377 [M+Na]⁺, 355 [M+H]⁺, 163 [caffeoyl]⁺.

Methyl 5-O-caffeoyl quinate (2)

Amorphous brown solid; ¹H NMR (CD₃OD): δ 2.00-2.21 (4H, *m*, H₂-2 and H₂-6), 3.69 (3H, *s*, -OCH₃), 3.74 (1H, m, H-4), 4.14 (1H, *m*, H-3), 5.28 (1H, *m*, H-5), 6.21 (1H, *d*, *J* = 15.9 Hz, H-8'), 6.78 (1H, *d*, *J* = 8.2 Hz, H-5'), 6.94 (1H *dd*, *J* = 1.7, 8.2 Hz, H-6'), 7.04 (1H, *d*, *J* = 1.7 Hz, H-2'), 7.52 (1H, *d*, *J* = 15.9 Hz, H-7'); ¹³C NMR (CD₃OD): δ 38.0 (C-2/6), 53.1 (C-8), 70.4 (C-3), 72.0 (C-5), 72.6 (C-4), 75.9 (C-1), 115.0 (C-8'), 115.2 (C-2'), 116.6 (C-5'), 123.0 (C-6'), 127.6 (C-1'), 146.8 (C-3'), 147.2 (C-7'), 149.6 (C-4'), 168.4 (C-9'), 175.5 (C-7); ESIMS *m*/z 369 [M+H]⁺.

Butyl 5-O-caffeoyl quinate (3)

Amorphous brown solid; ¹H NMR (CD₃OD): δ 0.86 (3H, *t*, *J* = 7.0 Hz, -CH₃), 1.30 (2H, m, -CH₂-), 1.56 (2H, *m*, -CH₂-), 1.99-2.21 (4H, *m*, H₂-2 and H₂-6), 3.75 (1H, *m*, H-4), 4.06 (2H, *m*, -OCH₂-), 4.15 (1H, *m*, H-3), 5.29 (1H, *m*, H-5), 6.21 (1H, *d*, *J* = 16.0 Hz, H-8'), 6.77 (1H, *d*, *J* = 8.5 Hz, H-5'), 6.92 (1H *dd*, *J* = 1.7, 8.5 Hz, H-6'), 7.03 (1H, *d*, *J*

= 1.7 Hz, H-2'), 7.52 (1H, d, J = 16.0 Hz, H-7'); ¹³C NMR (CD₃OD): δ 14.0 (-CH₃), 19.9 (-CH₂-), 31.5 (-CH₂-), 37.9 (C-2/6), 66.3 (-OCH₂-), 70.3 (C-3), 72.0 (C-5), 72.6 (C-4), 75.8 (C-1), 115.0 (C-8'), 115.1 (C-2'), 116.5 (C-5'), 122.9 (C-6'), 127.5 (C-1'), 146.7 (C-3'), 147.1 (C-7'), 149.5 (C-4'), 168.3 (C-9'), 175.0 (C-7); ESIMS *m*/*z* 411 [M+H] ⁺.

Scopoletin (4)

Yellow needle from EtOAc, mp 208-210°C, IR (KBr) vmax 3450 (OH), 1700 (C = O), 1620, 1610 (aromatic) cm⁻¹; UV λ_{max} nm (MeOH): 345, 297, 253, 228; ¹H NMR (CD₃OD): δ 3.90 (3H, s, 6-OCH₃), 6.18 (1H, *d*, *J* = 9.5 Hz, H-3), 6.75 (1H, *s*, H-8), 7.09 (1H, *s*, H-5), 7.83 (1H, *d*, *J* = 9.5 Hz, H-4); ¹³C NMR (CD₃OD): δ 56.8 (6-OCH₃), 104.0 (C-8), 110.0 (C-5), 112.6 (C-3, 4a), 146.1 (C-4), 147.1 (C-6), 151.4 (C-8a), 152.9 (C-7), 164.0 (C-2); ESIMS *m*/z 193 [M+H] ⁺.

ACKNOWLEDGMENTS

We are grateful to the National Science Council, Taiwan, for support of this research under Grant NSC 90-2113-M-077-005.

REFERENCES

- Li, H. L.; Huang, T. C. In Flora of Taiwan: Apocynaceae; 2nd ed., Editorial Committee of the flora of Taiwan, Taipei, Vol. IV, pp.201-204, 1998.
- 2. Kao, M. J. Encyclopedia of Chinese Materia Medica. Shin Wen Feng, Taipei, p.1332, 1980.
- 3. Kao, M. T. Popular Herbal Remedies of Taiwan. Southern Materials Center Inc.: Taipei, Vol. 2, p.121, 1990.
- 4. Kan, W. S. Pharmaceutical Botany. National Research Institute of Chinese Medicine, Taipei, p.452, 1991.
- 5. Huang, K. F.; Sy, M. L.; Lai, J. S. A New Pentacyclic Triterpene from Ecdsanthera rosea. J. Chin. Chem. Soc., 37:187-189, 1990.
- Luger, P.; Weber, M.; Dung, X. N.; Ky, P. T.; The, C. L. The New Pentacyclic Saponine Ecdsantherin [3β-Hydroxy-20-methylpregn-5,14-dien-16-one-(18-20)-lactone] from *Ecdsanthera rosea* Hook. Et Arn. (Apocynaceae) of Vietnam. Acta Cryst. C52:1574-1576, 1995.
- Cheminat, A.; Zawatzky, R.; Becker, H.; Brouillard, R. Caffeoyl Conjugates from Echinacea Species: Structures and Biological Activity. Phytochemistry, 27:1787-1794, 1988.
- Lin, L. C.; Kuo, Y. C.; Chou, C. J. Immunomodulatory Principles of *Dichrocephala bicolor*. J. Nat. Prod., 62: 405-408, 1999.
- 9. Lin, L. C.; Chou, C. J. Lignans and Flavonoids of Ipomoea cairca. Chin. Pharm. J. 49:13-20, 1997.

J Chin Med 13(4): 191-195, 2002

酸藤莖部之成分研究

林麗純 楊玲玲 周正仁

國立中國醫藥研究所

台北

(2002年7月1日受理, 2002年7月16日收校訂稿, 2002年7月18日接受刊載)

由酸藤的莖部分離得到六個化合物,經光譜分析,確定其結構分別為 5-Ocaffeoyl quinic acid (1), methyl 5-Ocaffeoyl quinate (2), butyl 5-Ocaffeoyl quinate (3), scopoletin (4), β-sitisterol (5), and β-sitisterol glycoside (6)。其中化合物 (1) 是含量較多的主成分,而化合物 (2) 及 (3) 分別是化合物 (1) 的甲酯及丁酯衍生物。化合物 (2) 及 (3) 的產生可能是來自於分離過程中使用了甲醇及正丁醇。

關鍵詞:酸藤,夾竹桃科,咖啡醯基奎寧酸,東蒗菪素。

聯絡人:林麗純,國立中國醫藥研究所,電話:02-28201999轉8341,傳真:02-28264276,E-mail:ldin@cma23.nricm.edu.tw。