CYCLODESIPEPTIDE AND DIOXOMORPHOLINE DERIVATIVES ISOLATED FROM THE INSECT-BODY PORTION OF THE FUNGUS CORDYCEPS CICADAE

Yuh-Chi Kuo^{1,2}, Lie-Chwen Lin¹, Ming-Jaw Don¹, Hui-Fen Liao¹, Yu-ping Tsai¹, Gene-Hsiang Lee³ and Cheng-Jen Chou¹

¹National Research Institute of Chinese Medicine, ² Institute of Life Science, Fu-Jen University, ³Instrumentation Center, College of Science, National Taiwan University Taipei, Taiwan (Received 19th September 2002, revised Ms received 4th October 2002, accepted 11th October 2002)

Seven compounds have been isolated from the methanol extract of the insect-body portions of Chan-hua, and namely ergosterol (1), ergosterol peroxide (2), bassiatin (3), bassiatin A (4), beauvericin (5), beauvericin A (6), and beauvericin B (7). The structures of 1, 2 and 7 were determined by spectral analyses and by comparison with existing data from literatures. Compounds 3, 4, 5 and 6 were elucidated by spectral analysis and further confirmed by X-ray crystallography. Among them, three cyclodesipeptides (5, 6 and 7) and two dioxomorpholines (3, 4) derivatives were not previously reported from Chan-hua. Bassiatin A is first isolated from nature.

Key words: Cordyceps cicadae, Fungi, Sterol, Cyclodesipeptide, Dioxomorpholine.

INTRODUCTION

*Cordyceps cicada*e Shing is a parasitic fungus on the larvae of *Cicada flammata* Dist. Both the ascocarps and the insect-body portions are named Chan-hua, and have been used as a drug for childhood convulsion, palpitation, and sedation.¹ In the previous work, there have been a considerable number of papers on the antitumor activity of various polysaccharides in Chan-hua.²⁻⁷ However, there has been a relative scarcity of papers on the immuno-pharmacological activity of the ascocarps and the insect-body portion of Chan-hua. In the course of our search for physiologically active substances in nature, we found that methanol extract of the insect-body portion of Chan-hua

Correspondce to: Cheng-Jen Chou, National Research Institute of Chinese Medicine, Tel: 02-28201999 ext. 7101, Fax: 02-28264276, E-mail: choucj@cma23.nricm.edu.tw

suppressed proliferation in human mononuclear cells (HMNC) activated by phytohemagglutinin (PHA). The inhibitory activity of the extract was concentration dependent. The IC₅₀ of the extract on PHA-treated HMNC was $32.5 \,\mu$ g/ml. Similarly, interleukin-2 (IL-2) in activated HMNC was also inhibition by the treatment of the extract. The inhibition of IL-2 was concentration dependent.⁸ This observation led us to investigate the potential biologically active substances of Chan-hua. In the present paper, we describe the extraction, isolation, purification and identification of three cyclodesipeptide and two dioxo-morpholine derivatives. They were not previously reported from this fungus, namely one novel substance, bassiatin A (4), as well as two known sterols.

RESULTS AND DISCUSSION

The methanol extract of the insect-body portions of *C. cicadae* was partitioned between water and ethyl acetate. Column chromatography of the ethyl acetate soluble fraction gave seven compounds. They are ergosterol (1),⁹ ergosterol peroxide (2),^{10,11} bassiatin (3),¹² bassiatin A (4), beauvericin (5),¹³ beauvericin A (6)¹³ and beauvericin B (7).¹³ The structures of these compounds, except 4, were identified by the spectral analyses and by comparison with existing data from the literatures. Compounds 3, 5 and 6 were further confirmed by X-raystallographic analysis. The novel substance 4, was elucidated by the spectral analyses and confirmed by X-ray crystallographic analysis. ORTEP

Fig. 1. Structures isolated from Cordyceps cicadae

bassiatin A

beauvericin A

drawing of **3**, **4**, **5** and **6** were shown in Fig. 2.

Compound **4** was obtained as colorless crystals. The molecular formula of **4** assigned as $C_{16}H_{21}NO_3$ by ¹³C NMR and DEPT, as well as EI-mass spectrum. As cited in Table 1, the ¹³C NMR and DEPT shown two carbonyl carbons at δ 167.3 and 165.9, suggesting that these two carbons were connected oxygen and/or nitrogen. The ¹H NMR shown the signals of an oxymethine proton at δ 3.06 (d, J = 1.9 Hz), a sp^3 methine proton at δ 4.39 (t, J = 4.5 Hz) and one *N*-methyl proton at δ 3.03 (s). On the basis of above data, **4** suggested having a skeleton of *N*-methyl-dioxomorpholine. Five aromatic protons at δ 7.28-7.31 (3H, m), 7.09 - 7.13 (2H, m) were correlated to the carbon signals at δ 129.2, 128.2 and 129.8, respectively, in its C-H COSY spectrum, and one quaternary carbon at δ 134.1 was observed in ¹³C NMR and DEPT, indicating the presence of a non-substitute benzyl group. Furthermore, the proton signals at δ 3.06 (1H), 1.98 (1H), 1.20 (2H), 0.65 (3H) and 0.71 (3H) were correlated to the carbon signals at δ

Compound					
3			4		
Atom	δC	δН	Atom	δC	δН
2	167.2 (s)		2	167.3 (s)	
3	62.7 (<i>d</i>)	4.38 (t, J, 43 Hz)	3	62.7 (<i>d</i>)	4.39 (t, J, 4.5 Hz)
5	165.5 (s)		5	165.9 (s)	
6	81.2 (<i>d</i>)	2.99 (<i>d</i> , <i>J</i> , 2.1 Hz)	6	79.0 (d)	3.06 (<i>d</i> , <i>J</i> , 1.9 Hz)
7	29.6 (d)	2.28 (<i>m</i>)	7	36.1 (<i>d</i>)	1.98 (<i>m</i>)
8	18.5(q)	0.82 (<i>d</i> , <i>J</i> , 7.0 Hz)	8	25.4 (<i>t</i>)	1.20 (<i>m</i>)
9	15.1(q)	0.74 (<i>d</i> , <i>J</i> , 6.8 Hz)	9	11.5 (q)	0.65 (<i>t</i> , <i>J</i> , 7.3)
10	37.1 (<i>t</i>)	3.26 (<i>dd</i> , <i>J</i> , 4.1, 14.0 Hz)	10	13.3 (q)	0.71 (<i>d</i> , <i>J</i> , 6.9 Hz)
		3.16 (<i>dd</i> , <i>J</i> , 4.4, 14.0 Hz)	11	37.0 (<i>t</i>)	3.14 (<i>dd</i> , <i>J</i> , 4.6 , 13.9 Hz)
11	134.1 (s)				3.26 (<i>dd</i> , <i>J</i> , 4.0 , 13.9 Hz)
12, 16	129.7 (d)	7.09 ~ 7.12 (<i>m</i>)	12	134.1 (s)	
13, 15	129.2 (d)	7.29 ~ 7.34 (<i>m</i>)	13, 17	129.8 (d)	7.09 ~ 7.13 (<i>m</i>)
14	128.2 (d)	7.29 ~ 7.34 (<i>m</i>)	14,1 6	129.2 (d)	7.28 ~ 7.31 (<i>m</i>)
N-CH ₃	32.4(q)	3.00(s)	15	128.2 (d)	7.28 ~ 7.31 (<i>m</i>)
	(*)		N-CH ₃	32.4 (q)	3.03 (s)

Table 1. ¹³C and ¹H NMR spectral data of 3 and 4 in CDCl₃^a

^a Assignments were based on ¹³C-DEPT, ¹³C-¹H COSY and ¹H-¹H COSY spectra.

 δ 79.0, 36.1, 25.4, 11.5 and 13.3, respectively, in its C-H COSY spectrum. These data together with two spin coupling systems, HC-6/HC-7/H₂C-8/H₃C-9 and HC-7/H₃C-10, were obtained in the ¹H-¹H COSY spectrum, indicating the presence of a 1-methylpropyl moiety in the structure of **4**. Comparison of the ¹H and ¹³C spectra data of **4** with those of **3**, except the 1-methylpthyl moiety is re-placed by the 1-methylpropyl moiety located at C-6 position, were shown similarities. On the basis of above analyses, the structure of **4** was elucidated as 4-methyl-6-(1-methylpropyl)-3-phenylmethyl-1,4-perhydrooxazine-2,5-dione.

The relative stereochemistry of **4** was determined by X-ray crystallographic analysis. A single crystal having an approximate dimension of $0.40 \times 0.25 \times 0.10$ mm was obtained from methanol-water system and used for X-ray craystallographic analysis. An ORTEP drawing of the molecular structure of **4** is shown in Fig. 2. It indicated that the relative stereochemistry at C-3 and C-6 could be either S/R or R/S. Comparing the optical rotations of **4** ($[\alpha]_D + 187.5^\circ$ (c 0.038, dichloromethane)) with that of bassiatin [(3S, 6R)-4-methyl-6-(1-methylethyl)-3-phenylmethyl-1,4-perhydrooxazine-2,5-dione] ($[\alpha]_D + 181.05^\circ$ (c 0.024, chloroform)) and other three isomer - (3R, 6S)-, (3R, 6R)-, (3S, 6S)- compounds. ¹² The structure of **4** was determined to be (3S, 6R)-4-methyl-6-(1-methylpropyl)-3-phenylmethyl-1,4-perhy-drooxazine-2,5-dione, and named as bassiatin A.

In the ¹H NMR spectrum of **4**, the signal at δ 3.06 assigned to H-6 is unusually in high field as an oxymethine proton neighboring to the 5-carbonyl group. This phenomenon is similar to the proton signal displayed at δ 2.99 of H-6 of bassiatin.² Therefore, judging from the conformation of **4**, the unusual chemical shift of H-6 can be attributed to the strong shielding effect from the benzyl group at C-3.

EXPERIMENTAL

General Experiment Procedures

Melting points were determined with a Yanaco MP-13 micro-melting point apparatus and are uncorrected. IR spectra were obtained as KBr pellets on a Nicolet Avatar 320 FT-IR spectrometer. Optical rotations were measured on a JASCO DIP-370 polarimeter. HRFABMS spectra were recorded in the positive ion mode on a JEOL JMS-HX 110 spectrometer. EIMS spectra were recorded on a Finnigan GCQ GC/MS spectrometer. ¹H, ¹³C-, and 2D-NMR spectra were recorded on a Bruker ACP-300 spectrometer and a Varian INOVA 500MHz NMR spectrometer. Chemical shifts are shown in δ values (ppm) with deuterated solvents as internal standard. Column chromatography was performed on silica gel 60 (70 ~ 230 mesh, Merck) using a solvent mixture system of ethyl acetate and hexane. HPLC was performed on a preparative reverse phase column and eluted with watermethanol system.

Materials

Cordyceps cicadae (Chan-hua) was purchased from a Chinese medicinal store in Taipei, and identified by Dr. Tun-Tschu Chang of the Division of Forest Protection, Taiwan Forestry Research Institute. A voucher specimen (No. TFRIA46) was deposited in the herbarium of Taiwan Forestry Research Institute, Taipei, Taiwan.

Extraction and Isolation

The dried Chan-hua (fungus: *C. cicadae*) was divided into two portions (the ascocarps and the insect-body). The insect-body of Chan-hua (9.7 Kg) was extracted with methanol at 60 °C over night for three times. The extracts were filtered and vacuum evaporated. The concentrate (1.5 Kg) was suspended in 3L distilled water and partitioned between ethyl acetate and water (1:1 v/v) to give ethyl acetate, water and suspended fractions. Ethyl acetate soluble fraction (535 g) was carried out on silica gel column chromatography with a gradient of ethyl acetate in hexane, and fourteen fractions (1-14) were collected. The fractions were collected in 450 mL portions and pooled according to their TLC profile in hexane-ethyl acetate (90:10, or 80:20 v/v). Fraction 5 was dissolved in methanol and gave crystalline ergosterol (1). Fraction 6 was further purified by silica gel MPLC (ethyl acetate gradient in hexane) to give ergosterol peroxide (2). After chromatographic separation of fraction 8 on silica gel MPLC (ethyl acetate gradient in hexane), sub-fraction (8-4) was further purified by preparative HPLC with Cosmosil 5C₁₈-AR-II column (20 × 250 mm) using a gradient of methanol in water system to give bassiatin (3) and bassiatin A (4). Fraction 10 was separated and purified as above treatment to afford beauvericin (5), beauvericin A (6) and beauvericin B (7).

Ergosterol (3ß-hydroxyergosta-5, 7, 22-triene) (1)⁹

Colorless plates; mp 150-152°C; IR (KBr) v max cm⁻¹ 3420, 2880, 1650, 1460, 1390, 1380, 1060, 1040; ¹H NMR (CDCl₃): δ 3.62 (1H, m, H-3), 5.55 (1H, m, H-6), 5.35 (1H, m, H-7), 0.61 (3H, s, C<u>H</u>₃-18), 0.92 (3H, s, C<u>H</u>₃-19), 1.01 (3H, d, J = 6.6Hz, C<u>H</u>₃-21), 5.18 (1H, m, H-22), 5.18 (1H, m, H-23), 0.78 (3H, d, J = 6.8Hz, C<u>H</u>₃-26), 0.82 (3H, d, J = 6.8Hz, C<u>H</u>₃-27), 0.90 (3H, d, J = 6.8Hz, C<u>H</u>₃-28); ¹³C NMR (CDCl₃): δ 38.4 (t, C-1), 32.0 (t, C-2), 70.5 (d, C-3), 40.8 (t, C-4), 141.3 (s, C-5), 119.6 (d, C-6), 116.3 (d, C-7), 139.8 (s, C-8), 46.3 (d, C-9), 37.0 (s, C-10), 21.1 (t, C-11), 39.1 (t, C-12), 42.8 (s, C-13), 54.6 (d, C-14), 23.0 (t, C-15), 28.7 (t, C-16), 55.7 (d, C17), 12.0 (q, C-18), 16.3 (q, C-19), 40.4 (d, C-20), 19.6 (q, C-21), 132.0 (d, C-22), 135.6 (d, C-23), 42.8 (d, C-24), 33.1 (d, C-25), 19.9 (q, C-26), 21.1 (q, C-27), 17.6 (q, C-28); EIMS: m/z 396 [M]⁺.

Ergosterol peroxide (3ß-hydroxy-5, 8-epidioxyergosta-6, 22-diene) (2)^{10,11}

Colorless needles; mp 180-182 °C; ¹H NMR (CDCl₃): δ 3.94 (1H, *m*, H-3), 6.20 (1H, *d*, *J* = 8.4Hz, H-6), 6.47 (1H, *d*, *J* = 8.5Hz, H-7), 0.79 (3H, *s*, CH₃-18), 0.86 (3H, *s*, CH₃-19), 0.97 (3H, *d*, *J* = 6.5Hz, CH₃-21), 5.20 (1H, *dd*, *J* = 7.5, 15.4Hz, H-22), 5.11 (1H, *dd*, *J* = 8.5, 15.4Hz, H-23), 0.79 (3H, *d*, *J* = 6.7Hz, CH₃-26), 0.80 (3H, *d*, *J* = 6.6 Hz, CH₃-27), 0.88 (3H, *d*, *J* = 6.5Hz, CH₃-28); ¹³C NMR (CDCl₃): δ 34.7 (*t*, C-1), 30.3 (*t*, C-2), 66.4 (*d*, C-3), 36.9 (*t*, C-4), 82.2 (*s*, C-5), 135.4 (*d*, C-6), 130.9 (*d*, C-7), 79.4 (*s*, C-8), 51.1 (*d*, C-9), 36.9 (*s*, C-10), 20.6 (*t*, C-11), 39.3 (*t*, C-12), 44.5 (*s*, C-13), 51.6 (*d*, C-14), 23.4 (*t*, C-15), 28.6 (*t*, C-16), 56.2 (*d*, C-17), 12.8 (*q*, C-18), 18.1 (*q*, C-19), 39.7 (*d*, C-20), 20.9 (*q*, C-21), 135.2 (*d*, C-22), 132.3 (*d*, C-23), 42.7 (*d*, C-24), 33.0 (*d*, C-25), 19.9 (*q*, C-26), 19.6 (*q*, C-27), 17.5 (*q*, C-28); EIMS: *m/z* 428 [M]⁺.

Bassiatin; (3S, 6R-4-methyl-6-(1-methylethyl)-3-phenylmethyl-1, 4-perhydro-oxazine-2, 5dione (3) ¹²

Colorless crystals; mp 146-149°C; IR (KBr) v max cm⁻¹ 2960, 2920, 2895, 2860, 1745, 1645, 1490, 1450, 1440, 1405, 1360, 1330, 1320, 1250, 1030, 770, 700; $[\alpha]_D$ +176° (c 0.5, chloroform); EIMS m/z : 261 [M]⁺; HREIMS *m/z*: 261.1355 (calcd for C₁₅H₁₉NO₃, 261.1356)

X-ray Crystal Structure Analysis of Bassiatin (3)

A colorless orthorhombic crystal of **4** with dimensions $0.10 \times 0.25 \times 0.35$ mm was obtained by re-crystallization from ethyl acetate-hexane system and selected for X-ray analysis. The crystallographic data were collected on a Bruker Smart CCD diffractometer using graphite-monochromated Mo K α radiation. A structure analysis was made using the SHELXTL program on PC.¹⁴The compound crystallized in the space group *P*2₁, a = 10.0092(4) Å, b = 10.8521(4) Å, c = 13.1658(5) Å, monoclinic, *V* = 1430.08(9) Å³, Z = 4, Decal = 1.214 Mg/m³, λ = 0.71073 Å, μ (Mo K α) = 0.084 mm⁻¹, F(000) = 560, and *T* = 296(2) K. A total of 10120 reflections were collected in the range of 2.43° ≤ θ ≤ 27.49°, of which only 3275 unique reflections with $I > 2\sigma(I)$ were corrected for the analysis. The structure was solved using direct methods and refined by full-matrix-least-squares on F^2 values. Non-hydrogen atoms were refines anisotropically. Hydrogen atoms were fixed at calculated positions and refined using a riding mode. The final indices were R = 0.0690, $R_w = 0.1567$ with goodness-of-fit = 0.985. Scattering factors were taken from International Tables for X-ray Crystallography.¹⁵

Bassiatin A; (3S, 6R)-4-methyl-6-(1-methylpropyl)-3-phenylmethyl-1,4-perhydrooxazine-2,5-dione (4)

Colorless crystals; mp 145-147°C; $[\alpha]_D$ +187.5° (c 0.038, dichloromethane); EIMS m/z: 275 $[M]^+$.

X-ray Crystal Structure Analysis of Bassiatin A (4)

A colorless monoclinic crystal of **4** with dimensions $0.40 \times 0.25 \times 0.10$ mm was obtained by re-crystallization from methanol-water system and selected for X-ray analysis. The crystallographic data were collected on a Bruker Smart CCD diffractometer using graphite-monochromated Mo K α radiation. A structure analysis was made using the SHELXTL program on PC.¹⁴The compound crystallized in the space group *P*2₁, a = 6.7580(3) Å, b = 13.9359(6) Å, c = 8.1205(4) Å, β = 93.9460(10)°, monoclinic, *V* = 762.97(6) Å³, *Z* = Q, Decal =1.199 Mg/m³, λ =0.71073 Å, μ (Mo K α) = 0.082 mm⁻¹, F (000) = 296, and *T* = 295(2) K. A total of 8037 reflections were collected in the range of 2.51° ≤ $\theta \le 27.50^\circ$, of which only 3490 unique reflections with *I* > 2 σ (*I*) were corrected for the analysis. The structure was solved using direct methods and refined by full-matrix-least-squares on *F*² values. Non-hydrogen atoms were refines anisotropically. Hydrogen atoms were fixed at calculated positions and refined using a riding mode. The final indices were *R* = 0.0401, *R*_w = 0.1170 with goodness-of-fit =1.001. Scattering factors were taken from International Tables for X-ray Crystallography.¹⁵

Beauvericin (5)¹³

Colorless crystal; ¹H NMR (CDCl₃): δ 0.37 (3H, *d*, *J* = 6.6Hz, γ 1-CH₃, Hiv), 0.76 (3H, *d*, *J* = 6.6Hz, γ 2- CH₃, Hiv), 1.97 (1H, *m*, β -CH, Hiv), 2.93 (1H, *dd*, *J* = 11.9, 14.5Hz, β -CH(*H*), Phe), 2.98 (3H, *s*, N- CH₃), 3.34 (1H, *dd*, *J* = 4.9, 14.5Hz, β -CH(*H*), Phe), 4.89 (1H, *d*, *J* = 8.5Hz, α -CH, Hiv), 5.51 (1H, *dd*, *J* = 4.8, 11.8Hz, α -CH, Phe), 7.20(5H, ar CH, Phe); ¹³C NMR (CDCl₃): δ 17.4 (*q*, γ 1-CH₃, Hiv), 18.2 (*q*, γ 2- CH₃, Hiv), 29.6 (*d*, β -CH, Hiv), 32.2 (*q*, N- N- CH₃), 34.7 (*t*, β - CH₂, Phe), 57.2 (*d*, α -CH, Phe), 75.4 (*d*, α -CH, Hiv), 126.7 (*d*, ar CH, Phe), 128.4 (*d*, ar CH, Phe), 128.8 (*d*, ar CH, Phe), 136.6 (*s*, ar C, Phe), 169.3 (*s*, CO); HRFABMS *m/z*: [M+H]⁺ 784.4164 (calcd for C₄₅H₅₈N₃O₉, 784.4173).

X-ray Crystal Structure Analysis of Beauvericin (5)

A colorless monoclinic crystal of **5** with dimensions $0.45 \times 0.40 \times 0.40$ mm was obtained by recry-stallization from methynol-water system and selected for X-ray analysis. The crystallographic data were collected on a Bruker

Smart CCD diffractometer using graphite-monochromated Mo K α radiation. A structure analysis was made using the SHELXTL program on PC. ¹⁴ The compound crystallized in the space group $P2_1$, a = 8.3591(3) Å, b = 17.1798(7) Å, c = 15.9151(6) Å, β = 93.084(1)°, monoclinic, V = 2282.22(15) Å³, Z = Q, Dcalc = 1.240 Mg/m³, λ = 0.71073 Å, μ (Mo K α) = 0.089mm⁻¹, F (000) = 916, and T = 150 K. A total of 24247 reflections was collected in the range of 1.28° $\leq \theta \leq 27.50^{\circ}$, of which only 10466 unique reflections with $I > 2\sigma(I)$ were corrected for the analysis. The structure was solved using direct methods and refined by full-matrix-least-squares on F^2 values. Non-hydrogen atoms were refines anisotropically. Hydrogen atoms were fixed at calculated positions and refined using a riding mode. The final indices were R = 0.045, $R_w = 0.122$ with goodness-of-fit = 1.046. Scattering factors were taken from International Tables for X-ray Crystallography.¹⁵

Beauvericin A (6) ¹³

Colorless crystal; ¹H NMR (CDCl₃): δ 0.39 (3H, *d*, *J* = 6.7Hz, γ 1-CH₃, Hiv), 0.40 (3H, *d*, *J* = 6.8Hz, γ 1-CH₃, Hiv), 0.65 (3H, *m*, δ -CH₃, Hmp), 0.70 (2H, *m*, γ 1- CH₂, Hmp), 0.74 (3H, *d*, *J* = 6.5Hz, γ 2- CH₃, Hiv), 0.76 (3H, *d*, *J* = 6.7Hz, γ 2- CH₃, Hiv), 0.78 (3H, *d*, *J* = 6.9Hz, γ 2- CH₃, Hmp), 1.77 (1H, *m*, β -CH, Hmp), 2.02 (2H, *m*, β -CH, Hiv), 2.95 (3H, *s*, N- CH₃), 2.99 (6H, *s*, N- CH₃), 2.90~2.99 (3H, β -CH(*H*), Phe), 3.34 (3H, β -CH(*H*), Phe), 4.87 (1H, *d*, *J* = 8.6Hz, α -CH, Hiv), 4.89 (1H, *d*, *J* = 8.4Hz, α -CH, Hiv), 4.98 (1H, *d*, *J* = 7.7Hz, α -CH, Hmp), 5.50 (3H, *m*, α -CH, Phe), 7.20 (15H, *m*, ar CH, Phe); ¹³C NMR (CDCl₃): δ 11.3 (δ - CH₃, Hmp), 14.4 (γ 2- CH₃, Hmp), 17.4 (γ 1-CH₃, Hiv), 18.3 (γ 2- CH₃, Hiv), 24.3 (γ 1- CH₂, Hmp), 29.7 (β -CH, Hiv), 32.1 (N- CH₃), 32.1 (N- CH₃), 34.6 (β - CH₂, Phe), 34.8 (β - CH₂, Phe), 35.9 (β -CH, Hmp), 57.1 (α -CH, Phe), 136.6 (ar C, Phe), 169.5 (CO), 169.9 (CO); HRFABMS m/z [M+H]⁺798.4332 (calcd for C₄₀H₆₀N₃O₉, 784.4330).

X-ray Crystal Structure Analysis of Beauvericin A (6)

A colorless monoclinic crystal of **6** with dimensions $0.45 \times 0.40 \times 0.13$ mm was obtained by re-crystallization from methanol-water system and selected for X-ray analysis. The crystallographic data were collected on a Bruker Smart CCD diffractometer using graphite-monochromated Mo K α radiation. A structure analysis was made by using the SHELXTL program on PC.¹⁴ The compound crystallized in the space group *P*2₁, a = 8.4078(4) Å, b = 17.0702(7) Å, c = 16.4296(10) Å, β = 92.947(1)°, monoclinic, *V* = 2341.60(19) Å³, Z = Q, Dcalc = 1.228 Mg/m³, λ = 0.71073 Å, μ (Mo K α) = 0.088mm⁻¹, F (000) = 932, and *T* = 150 (2) K. A total of 20829 reflections was collected in the range of 1.25° ≤ θ ≤ 27.50°, of which only 9936 unique reflections with *I* > 2 σ (*I*) were corrected for the analysis. The structure was solved using direct methods and refined by full-matrix-least-squares on *F*² values. Non-hydrogen atoms were refines anisotropically. Hydrogen atoms were fixed at calculated positions and refined using a riding mode. The final indices were R = 0.0614, $R_w = 0.1362$ with goodness-of-fit = 1.034. Scattering factors were taken from International Tables for X-ray Crystallography.¹⁵

Beauvericin B (7)¹³

Colorless crystal; ¹H NMR (CDCl₃): δ 0.38 (3H, *d*, *J* = 6.6Hz, γ 1-CH₃, Hiv), 0.65 (6H, *m*, δ - CH₃, and 4H, *m*, γ 1-CH₂, Hmp), 0.73 (3H, *d*, *J* = 6.7Hz, γ 2- CH₃, Hiv), 0.75 (3H, *d*, *J* = 7.0Hz, γ 2- CH₃, Hmp), 0.76 (3H, *d*, *J* = 6.5Hz, γ 2-CH₃, Hiv), 1.62 (2H, *m*, β -CH, Hmp), 1.93 (1H, *m*, β -CH, Hiv), 2.96 (6H, *s*, N- CH₃), 2.99 (3H, *s*, N- CH₃), 2.87~3.02 (3H, *m*, β -CH(*H*), Phe), 3.37 (3H, *m*, β -CH(*H*), Phe), 4.84 (1H, *d*, *J* = 8.1Hz, α -CH, Hiv), 4.94 (1H, *d*, *J* = 7.5Hz, α -CH, Hmp), 4.95 (1H, *d*, *J* = 7.3Hz, α -CH, Hmp), 5.57 (3H, *m*, α -CH, Phe), 7.21(15H, *m*, ar CH, Phe); HRFABMS m/z [M+H]⁺812.4492 (calcd for C₄₇H₆₂N₃O₉, 812.4486).

ACKNOWLEDGMENT

The authors thank the National Science Council of the Republic of China for financial support (NSC 89-2113-M-077-007), and Dr. Tun-Tschu Chang for the identification of *C. cicadae*.

REFERENCES

- Juangsu New Medical College. Zhong Yao Da Ci Dian (Dictionary Chinese Materia Medica), Shanghai Scientific and Technological Publishers, Shanghai, pp. 2557-2558, 1979.
- 2. Ukai S, Matsuura S, Hara C, Kiho T, Hirose K. Polysaccharides in fungi. Part VII. Structure of a new galactomannan from the ascocarps of *Cordyceps cicadae* Shing. Carbohydr Res 101: 109-116, 1982.
- 3. Ukai S, Kiho T, Hara C, Morita M, Goto A, Imaizumi N, Hasegawa Y. Polysaccharides in fungi. VIII. Antitumor activity of various polysaccharides isolated from *Dictyophora indusiata, Ganoderma japonicum, Cordyceps cicadae, Auricularia auricula-judae,* and *Auricularia* species. Chem Pharm Bull 31: 741-744, 1983.
- 4. Kiho T, Miyamoto I., Nagai K, Ukai S, Hara C. Polysaccharides in fungi. Part XXI. Minor, proteincontaining galactomannans from the insect-body portion of the fungal preparation Chan hua (*Cordyceps cicadae*). Carbohydri Res 181: 207-215, 1988. Chemical Abstract 109: 186925c, 1988.
- 5. Kiho T, Ito M, Nagai K, Hara C, Ukai S. Polysaccharides in fungi XXII. A water-soluble polysaccharide from the alkaline extract of the insect-body portion of chan-hua (fungus: *Cordyceps cicadae*). Chem Pharm Bull. 36: 3032-3037, 1988.
- 6. Kiho T, Ito M, Yoshda I, Nagai K, Hara C, Ukai S. Polysaccharides in fungi. XXIV. A (1-3)-b-D-glucan from the alkaline extract of the insect-body portion of chan hua (fungus: *Cordyceps cicadae*). Chem Pharm Bull 37: 2770-2772, 1989.
- 7. Kiho T, Nagai K, Miyamoto I., Watanabe T, Ukai S. Polysaccharides in fungi. XXV. Biological activities

of two galactomannans from the insect-body portion of chan hua (fungus: *Cordyceps cicadae*). Yakugaku Zasshi 110: 286-288, 1990.

- 8. Weng SC, Chou CJ, Lin LW, Tsai WJ, Kuo YC. Immunomodulatory functions of extracts from the Chinese medicinal fugus *Cordyceps cicadae* J Ethnopharmacology 2002. in press.
- 9. Takaishi Y, Uda M, Ohashi T, Nakano K, Murakami K, Tomimatsu T. Glycosides of ergosterol derivatives from *Hericum erinacens*. Phytochemistry 30: 4117-4120, 1991.
- Sgarbi DBG, Silva AJR, Carlos IZ, Silva CL, Angluster J, Alviano CS. Isolation of ergosterol peroxide and its reversion to ergosterol in the pathogenic fungus Sporothrix schenckii. Mycopathologia 139: 9-14, 1997.
- 11. Bok JW, Lermer L, Chilton J, Klingeman HG, Neil Towers GH. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 51: 891-898, 1999.
- 12. Kagamizono T, Nishino E, Matsumoto K, Kawashima A, Kishimoto M, Sakai N, He BM, Chen Z. X, Adachi T, Morimoto S, Hanada K. Bassiatin, a new platelet aggregation inhibitor produced by Beauveria bassiana K-717. J Antibiotics 48: 1407-1412, 1995.
- 13. Gupta S, Montllor, Hwang YS. Isolation of novel beauvericin analogues from the fungus Beauveria bassiana. J Nat Prod 58: 733-738, 1995.
- 14. Sheldrick GM. SHELXTL/PC, Version 5.10, Bruker Analytical X-ray Instruments Inc., Madison, WI. 1997.
- 15. Ibers, J. A., Hamilton, W.C. (eds), International Tables for X-ray Crystallography, The Kynoch Press: Birmingham, U. K., Vol. IV, 1974.

J Chin Med 13(4): 209-219, 2002

中藥蟬花活性成分之研究

郭育綺^{1,2} 林麗純¹ 董明兆¹ 廖慧芬¹ 蔡雨萍¹ 李錦祥³ 周正仁¹

1國立中國醫藥研究所

2輔仁大學生命科學研究所

3國立台灣大學理學院儀器中心

台北

(2002年9月19日受理, 2002年10月4日收校訂稿, 2002年10月11日接受刊載)

中藥蟬花是麥角菌科(Clavicipitaceae)大草蟬草菌(*Cordyceps cicadae* Shing)寄生在山蟬(*Cicada flammata* Dist)幼蟲的真菌,藥材包括其子實體及蟲體,是作為治療小兒驚厥,心悸,及鎮定的中藥。在我們擬由天然物中覓找生理活性物質的系列,發現其蟲體甲醇抽取物在植物凝集素(DHA)刺激下,呈現抑制人類單核細胞增生活性,其抑制度與濃度成比例關係,因此,進行其活性成分之探研,經本次實驗研究,蟬花蟲體部份離出麥角甾醇(ergosterol),過氧麥角甾醇(ergosterol peroxide),白僵菌酮(bassiatin)及白僵菌酮甲(bassiatin A),白僵菌素(beauvericin), 白僵菌素甲(beauvericin A),白僵菌酮甲(bassiatin A)更是首次由天然物界發現。

關鍵詞:蟬花,真菌,甾醇,環酯 化合物,嗎 二酮化合物。