CONSTITUENTS OF STEM BARK OF ERYTHRINA ARBORESCENS

Keh-Feng Huang and Chin-Jong Hsu

Institute of Applied Chemistry, Providence University Taichung, Taiwan

(Received 6th February 2001, revised Ms received 23th February 2001, accepted 5th March, 2001)

From the methanolic extracts of stem bark of *Erythrina arborescens* Roxb. (Leguminosae) eight components were obtained. The structure of these compounds were elucidated as squalene (1), phytosterols (2), oleanolic acid (3), alpinumisoflavone (4), erythrivarone C (5), warangalone (6), erythrinin C (7) and a mixture of phytosteroid glycosides (8) by the usual spectroscopic methods and 2D NMR techniques.

Key words: Erythrina arborescens Roxb., Leguminosae, Prenylated isoflavonoids.

INTRODUCTION

Erythrina arborescens Roxb. (Leguminosae) is a large deciduous tree which is widely distributed in India and Southern China.¹ This plant was introduced as an ornamental plant in Taiwan^{1,2} and is used for relieving fever and inflammation, promotion of gastrointestinal absorption and for treating rheumatism in folk medicine.³ Previously,⁴ we described the isolation of five known triterpenoids and one protobeberine alkaloid from the leaves of *Erythrina arborescens* Roxb. (Leguminosae). Continuation of our studies on the stem bark of this plant has yielded four prenylatedisoflavonoids (**4** - **7**) together with known compounds (**1** – **3**, **8**). In this paper, we reported the isolation and structural elucidation of these compounds.

RESULTS AND DISCUSSION

The eight constituents were obtained as described in the experimental section. Components 2 and 8 are stigmastane derivatives and were identified as campesterol (2a, 14.96%), stigmasterol (2b, 57.70%), β -sitosterol (2c, 27.34%), campesteryl-3-*O*- β -*D*-glucopyranoside (8a, 4%), stigmasteryl-3-*O*- β -*D*-glucopyranoside (8b, 74%) and

Correspondence to: Keh-Feng Huang, Institute of Applied Chemistry, Providence University, Sha-lu, Taichung 43301, Taiwan, R.O.C. TEL:(04)26328001Ext. 5206, FAX:(04)26327554.

 β - sitosteryl-3-*O*- β -*D*-glucopyranoside (8c, 22%) by the spectroscopic methods⁵ and GC analysis. In addition, squalene(1),⁶ oleanolic acid (3),⁵ alpinumisoflavone (4),⁷ erythrivarone C (5),⁸ and warangalone (6),⁹ were also identified by comparing their spectral data with literature values. Compound 7, $C_{20}H_{18}O_6$ ([M⁺] at m/z 354), obtained as yellow needles, gave a positive ferric chloride test, but negative Mg-HCl test. The ¹H NMR spectrum showed an one-proton singlet at $\delta 8.10$ assignable to the H-2 of an isoflavone skeleton¹⁰ and characteristic signals for a hydroxyisopropyldihydrofuran [an AMX system at δ 3.29 (J = 15.6, 9.5 Hz), 3.56 (J = 15.6, 7.6 Hz) and δ 4.95 (J = 9.5, 7.6 Hz), two three-proton singlets at δ 1.40 and 1.51 and mass spectrum showed the base peak at m/z 295 (M⁺-59)]].¹¹ The presence of an A₂X₂ system at δ 7.26 and 7.70 (each J = 9.0 Hz) of the 4'-oxygenated B ring indicated that the hydroxyisopropyldihydrofuran ring was fused on the A ring.¹⁰ The chelated hydroxyl group at C-5 (δ 13.74) and a one-proton singlet at δ 6.49 indicated a hydroxy isopropyldihydrofuran ring fused with the A ring in the linear form but not in the angular form.¹⁰ Furthermore, the orientation of the furan ring was confirmed by ¹H-¹H NOESY, HMQC and HMBC NMR techniques. The HMBC spectrum showed correlations between H-2 (88.10) and C-3 (\$ 123.78), H-2 and C-4 (\$ 181.43), H-2 and C-9 (\$ 158.48), H-8 (\$ 6.49) and C-6 (\$ 110.10), H-8 and C-7 (\$ 167.22), H-8 and C-9 (& 158.48), H-8 and C-10 (& 106.79), H-2" (& 4.95) and C-7 (& 167.22), H-2" and C-3" (& 27.71), H-3"a (δ 3.29) and C-6 (δ 110.10), H-3"a and C-7 (δ 167.22), H-3"a and C-3" (δ 27.71), H-3"a and C-4" (δ 70.92), H-3"b (\$ 3.56) and C-6 (\$ 110.10), H-3"b and C-7 (\$ 167.22), H-3"a and C-4" (\$ 70.92), C-5-OH (\$ 13.74) and C-5 (\$ 157.62), C-5-OH and C-6 (8 110.10), and C-5-OH and C-10 (8 106.79) (Table 1). These correlations clearly confirmed that the hydroxyisopropyldihydrofuran ring was fused in a linear form. Consequently, 7 was deduced to be erythrinin C (5,4'-dihydroxy-5"-(hydroxyisopropyl) dihydrofuran [3",2":6,7] isoflavone) (7)¹². Its ¹³C NMR and 2D NMR spectral data are reported here for the first time. The known triterpenoids, squalene (1) and oleanolic acid (3) together with pre-nylated flavonoids, alpinumisoflavone (4), erythrivarone C (5), warangalone (6) and erythrinin C (7), have not previously been reported from this plant.

Н	Carbon correlated	NOESY
H-2	3, 4, 9	H-2',6'
H-8	6, 7, 9, 10	
H-2',6'	3, 4'	H-2, 3', 5'
H-3',5'	1', 4'	H-3', 6'
H-2"	7, 3"	H-3"a, 5", 6"
Н-3"а	6, 7, 4"	H-2", 3"b
H-3"b	6, 7, 2", 4"	H-2", 3"b
H-5"	2", 4", 6"	H-3"a, 5", 6"
Н-6"	2", 4", 5"	H-2", 3"b
5-OH	5, 6, 10	

 Table 1.
 HMBC Correlations and NOESY of Erythrinin C (7)

4'-OH

EXPERIMENTAL

General Method

Melting points were measured on a Yanaco micro melting-point apparatus and were uncorrected. IR spectra were recorded on Jasco A-302 or Hitachi I-2001 infrared spectrometers. EIMS spectra were recorded on a Jeol JMX-SX/SX 102A mass spec-trometer. ¹H NMR and ¹³C NMR, COSY, HMQC, HMBC and DEPT spectra were recorded on Varian VXR-300, 600 or Bruker TMX 400 spectrometers with TMS as an internal standard. UV spectra were recorded on a Shimadzu UV 260 ultraviolet spectrometer. GC spectra were obtained on a Hewlett Packard 5890 series II gas chromatograph. Optical rotations were measured on a Perkin Elmer 241 MC digital polarimeter.

Plant Material

The stem bark of Erythrina arborescens Roxb. (Leguminosae) was collected at Taichung, Taiwan, in June, 1996.

The plant was identified by Mr. Nien-Yung Chiu (Institute of Chinese Pharmaceutical Sciences, China Medical College).

Extraction and Separation

The air-dried stem bark of *Erythrina arborescens* Roxb. (Leguminosae) (4.40 Kg) was extracted with boiling methanol. The extracts were combined and concentrated *in vacuo*. The residue (207.1 g) was suspended in methanol-water (1 L, 1:9, v/v) solution and then extracted with chloroform to give chloroform solution and aqueous solution. The concentrated chloroform extract (111.7 g) was subjected to silica gel column chromatography using a mixture of CHCl₃-MeOH of increasing solvent polarity as eluent to give 10 fractions. Fractions 1-3 were combined and purified by repeated column chromatography on silica gel with *n*-hexane-ethyl acetate (19:1) to afford squlene (1, 20 mg), phytosterols (2, 136 mg) and oleanolic acid (3, 18 mg), respectively. Fractions 4-7 were rechromatographed on a silica gel column with *n*-hex-ane and increasing concentrations of ethyl acetate to yield alpinumisoflavone (4, 779 mg), erythrivarone C (5, 23 mg), warangalone (6, 28 mg) and erythrinin C (7, 482 mg), respectively. Fractions 9 were rechromatographed on silica gel with CHCl₃-MeOH of increasing polarity to give phytosteryl glucosides (8, 483 mg).

Squalene (1)

Colorless oil, IR (KBr) cm⁻¹: 2870, 1440, 1375, 840; ¹H-NMR (300 MHz, CDCl₃): δ 1.60 (12 H, *s*, Me x 4), 1.67 (12 H, *s*, Me x 4), 2.00 (20H, *m*, CH₂ x 10), 5.11 (6H, *t*, *J* = 6.1 Hz, C=C-H x 6); EIMS *m*/*z* (rel. int): 410 [M⁺] (10), 341 (16), 273 (8), 205 (8), 137 (76), 84 (100), 69 (64).

phytosterols (2)

Colorless needles from CHCl₃/MeOH; mp: 149-151°C; Liebermann-Burchard (L.B.) test: positive; IR (KBr)

cm⁻¹: 3426 (OH), 1598 (C = C); ¹H NMR (300 MHz, CDCl₃): δ 0.70 (*s*, H-18), 1.01 (*s*, H-19), 3.53 (*m*, H-3 α), 5.01 (*dd*, *J* = 15.4, 8.4 Hz, H-23), 5.15 (*dd*, *J* = 15.4, 8.4 Hz, H-22), 5.35 (*d*, *J* = 5.4 Hz, H-6); EIMS *m/z* (rel. int): 414 [M]⁺ (100), 412 [M]⁺ (18), 400 [M]⁺ (53); The GC was run under the following conditions : HP-5 capillary column (30 m × 0.25 µm × 0.32 mm), carrier gas N₂ 19.1 mL/min, column temperature 290°C, injection and FID temperature 300°C. Mixture **1** was identified as campestesterol (**2a**, t_R = 10.92 min, 14.96%); stigmasterol (**2b**, t_R = 11.31 min, 57.70%) and β-sitosterol (**2c**, t_R = 12.12 min, 27.34%) by coinjection with an authentic sample.

Oleanolic acid (3)

Colorless needles from CHCl₃/MeOH; mp >300°C; $[\alpha]_D$ +58.18° (CHCl₃, c = 0.17); L.B. test: positive; IR (KBr) cm⁻¹: 3615 (OH), 2945, 1682 (COOH); ¹H NMR (300 MHz, CDCl₃): δ 0.75 (3H, s, H-24), 0.77 (3H, s, H-26), 0.90 (3H, *s*, H-23), 0.92 (3H, *s*, H-29), 0.95 (3H, *s*, H-30), 0.98 (3H, *s*, H-25), 1.13 (3H, *s*, H-27), 2.84 (1H, *dd*, *J*=13.7, 3.5 Hz, H-18), 3.22 (1H, *dd*, *J* = 10.2, 5.1, Hz, H-3 α), 5.28 (1H, *t*, *J* = 3.6 Hz, H-12); ¹³C-NMR (75 MHz, CDCl₃-CD₃OD): δ 37.89 (*t*, C-1), 26.12 (*t*, C-2), 79.08 (*d*, C-3),39.82 (*s*, C-4), 55.39(*d*, C-5),18.44 (*t*, C-6), 32.99 (*t*, C-7), 39.42 (*s*, C-8), 46.73 (*d*, C-9), 34.17 (*s*, C-10), 23.09 (*t*, C-11), 122.80 (*d*, C-12),143.20 (*s*, C-13), 41.08 (*s*, C-14), 28.12 (*t*, C-15), 23.73 (*t*, C-16), 46.68 (*s*, C-17), 39.46 (*d*, C-18), 45.05 (*t*, C-19), 32.48 (*s*, C-20), 33.28 (*t*, C-21), 28.23 (*t*, C-22), 30.84 (*q*, C-23), 15.50 (*q*, C-24), 15.63 (*q*, C-25), 17.16 (*q*, C-26), 26.99 (*q*, C-27),182.23 (*s*, C-28), 33.05 (*q*, C-29), 23.87 (*q*, C-30); EI MS *m/z* (rel. int): 456 [M⁺] (4), 248 (100), 203 (58), 189 (11), 133 (10).

Alpinumisoflavone (4)

Yellow needles from chloroform-acetone, mp: 213-214°C, IR (KBr) cm⁻¹: 3415 (OH), 2935, 1710, 1468, 1385, 1048 cm⁻¹; UV (MeOH) λ_{max} nm (log ε) : 228 (4.16), 283 (4.56), 340 (3.26); ¹H NMR (400 MHz, CDCl₃-CD₃OD): δ 1.47 (6H, *s*, H-5", 6"), 5.63 (1H, *d*, *J* = 10.2 Hz, H-3"), 5.80 (1H, *s*, 4'-OH), 6.34 (1H, *s*, H-8), 6.73 (1H, *d*, *J* = 10.2 Hz, H-4"), 6.89 (2H, *d*, *J* = 8.7 Hz, H-3', 5'), 7.39 (2H, *d*, *J* = 8.7 Hz, H-2', 6'), 7.81 (1H, *s*, H-2), 13.08 (1H, *s*, 5-OH); ¹³C NMR (100 MHz, CDCl₃-CD₃OD): δ 152.71 (C-2), 122.92 (C-3), 181.22 (C-4), 157.03 (C-5), 106.75 (C-6), 157.50 (C-7), 95.04 (C-8), 156.16 (C-9), 105.73 (C-10), 123.86 (C-1'), 130.41 (C-2', 6'), 115.88 (C-3', 5'), 159.70 (C-4'), 78.24 (C-2''), 128.28 (C-3''), 115.54 (C-4''), 28.29 (C-5'', 6''); EIMS *m/z* (rel. int) : 336 [M]⁺ (30), 322 (22), 321 (100), 203 (6), 149 (35), 57 (70).

Erythrivarone C (5)

Yellow needles from CHCl₃-MeOH, mp 202-203°C, $[\alpha]_D +11.2^{\circ}$ (MeOH; c = 0.08); IR (KBr) cm⁻¹: 3489 (OH), 2977, 1640 (C = O), 1606, 1517, 1433, 1223, 1026, 833; UV (MeOH) λ_{max} nm (log ε) : 227 (4.04), 287 (3.86), 340 (3.33); ¹H NMR (600 MHz, acetone-d₆): δ 1.51 (6H, *s*, H-5", 6"), 1.86 (3H, *s*, H-5"), 2.95 (1H, *dd*, *J* = 13.8, 7.8 Hz, H-1"a), 2.99 (1H, *dd*, *J* = 13.8, 6.0 Hz, H-1"b), 4.37 (1H, *dd*, *J* = 7.8, 6.0 Hz, H-2"), 4.69 (1H, *br s*, H-4"a), 4.77 (1H, *br s*, H-4"b), 5.78 (1H, *J* = 10.2 Hz, H-3"), 6.70 (1H, *d*, *J* = 10.2 Hz, H-4"), 6.91 (2H, *d*, *J* = 8.4 Hz, H-3', 5'), 7.48 (2H, *d*, *J* = 8.4 Hz, H-2', 6'), 8.27 (1H, s, H-2), 13.46 (1H, *s*, 5-OH); ¹³C NMR (100 MHz, CDCl₃-CD₃OD): δ 151.84 (*d*, C-2), 120.88 (*s*, C-3), 180.65 (*s*, C-4), 154.34 (*s*, C-5), 104.89 (*s*, C-6), 156.35 (*s*, C-7), 103.60 (*s*, C-8), 154.70 (*s*, C-9), 104.23 (*s*, C-10), 122.68 (*s*, C-1'), 129.33 (*d*, C-2', 6'), 114.62 (*d*, C-3', C-5'), 156.17 (*s*, C-4'), 77.45 (*s*, C-2"), 127.14 (*d*, C-3"), 114.78 (*d*, C-4"), 27.36 (*q*, C-5", 6"), 27.85 (*t*, C-1"), 74.52 (*d*, C-2"), 146.04 (*s*, C-3"), 110.25 (*t*, C-4"), 16.48 (*q*, C-5"'); EIMS *m/z* (rel. int):420 [M]⁺(20), 349 (100), 331 (7), 295 (4), 231 (10), 118 (20).

Warangalone (6)

Yellow needles from methanol-acetone; mp : 161-162°C; IR (KBr) cm⁻¹: 3430 (OH), 3074, 1652 (C = O), 1572; UV (MeOH) λ_{max} nm (log ε) : 226 (4.22), 287 (4.54) ; ¹H-NMR (300 MHz, CDCl₃): δ 1.48 (3H, *s*, H-5"), 1.56 (3H, *s*, H-6"), 1.68 (3H, *d*, *J* = 1.2 Hz, H-4"), 1.81 (3H, *s*, H-5"), 3.38 (2H, *d*, *J* = 7.5 Hz, H-1"), 5.18 (1H, *tq*, *J* = 7.5, 1.2 Hz, H-2"), 5.60 (1H, *d*, *J* = 10.2 Hz, H-3"), 6.72 (1H, *d*, *J* = 10.2 Hz, H-4"), 6.90 (2H, *d*, *J* = 8.4 Hz, H-3', 5'), 7.40 (2H, *d*, *J* = 8.4 Hz, H-2', 6'), 7.88 (1H, *s*, H-2), 8.20 (1H, *s*, 4'-OH), 13.10 (1H, *s*, 5-OH); ¹³C NMR (75 MHz, CD₃Cl₃): δ 155.40 (*d*, C-2), 123.78 (*s*, C-3), 182.27 (*s*, C-4), 155.81 (*s*, C-5), 105.92 (*s*, C-6), 157.47 (*s*, C-7), 108.32 (*s*, C-8), 155.52 (*s*, C-9), 105.86 (*s*, C-10), 123.04 (*s*, C-1'), 131.19 (*d*, C-2', 6'), 115.95 (*d*, C-3', 5'), 158.54 (*s*, C-4'), 78.73 (*s*, C-2"), 129.24 (*d*, C-3"), 116.22 (*d*, C-4"), 28.27 (*q*, C-5", 6"), 21.78 (*t*, C-1"), 122.91 (*d*, C-2"), 132.12 (*s*, C-3""), 17.92 (*q*, C-4""), 25.80 (*q*, C-5""); EIMS *m*/*z* (rel. int.): 404 [M]⁺ (48), 389 (100), 361 (25), 349 (38), 321 (16), 215 (9). 118 (22).

Erythrinin C (7)

Yellow needles from methanol-chloroform; mp:218-219°C; IR (KBr) cm⁻¹:3450 (OH), 1675 (C = O), 1618, 1565; UV (MeOH) λ_{max} (log ε):216 (3.85), 267 (3.92) nm; ¹H-NMR (400 MHz, pyridine–d₅): δ 1.40 (3H, *s*, H-5"), 1.51 (3H, *s*, H-6"), 3.29 (1H, *dd*, *J*=15.6, 9.5 Hz, H-3"a), 3.56 (1H, *dd*, *J* = 15.6, 7.6 Hz, H-3"b), 4.95 (1H, *dd*, *J* = 9.5, 7.6 Hz, H-2"), 6.49 (1H, *s*, H-8), 7.26 (2H, *d*, *J* = 9.0 Hz, H-3', 5'), 7.70 (2H, *d*, *J* = 9.0Hz, H-2', 6'), 8.10 (1H, *s*, H-2), 11.77 (1H, *s*, 4'-OH), 13.74 (1H, *s*, 5-OH); ¹³C NMR (100 MHz, pyridine–d₅) : δ 25.83 (C-5"), 26.08 (C-6"), 27.71 (C-3"), 70.92 (C-4"), 89.04 (C-8), 92.93 (C-2"), 106.79 (C-10), 110.10 (C-6), 116.27 (C-3', 5'), 122.29 (C-1'), 123.77 (C-3), 131.12 (C-2', 6'), 153.34 (C-2), 157.62 (C-5), 158.48 (C-9), 159.38 (C-4'), 167.22 (C-7), 181.43 (C-4); EIMS *m/z* (rel. int): 354 [M⁺] (74), 334 (18), 321 (42), 295 (100). 118 (7).

Phytosteryl-3-O-β-D-glucosides (8)

Colorless granules from CHCl₃-MeOH, mp > 300°C, IR (KBr) cm⁻¹: 3410 (OH), 1570 (C = C); ¹H NMR (300 MHz, pyridine-d₅) : δ 0.63 (*s*, H-18), 1.02 (*s*, H-19), 5.02 (*d*, *J* = 7.8 Hz, H-1'), 5.37 (*d*, *J* = 3.1 Hz, H-6); EIMS *m/z* (rel. int): 396 (100); Positive ion FABMS (matrix NBA) *m/z* (rel. int.): 577 (8), 397 (26), 154 (NBA+1,100). Mixture **8** (10 mg) was hydrolyzed with 10 % HCl-EtOH (10 mL) for 6 h and worked up as usual. The residue was recrystallized from CHCl₃-MeOH to yield colorless needles and identified as campesterol (**8a**, t_R = 10.77 min, 3.52 %), stigmasterol (**8b**, t_R = 11.21 min, 74.40 %) and β -sitosterol (**8c**, t_R = 12.95 min, 22.08 %) by GLC analysis under the conditions described above. The aqueous layer was characterized as *D*-glucose by paper chromatography with authentic *D*-glucose. Thus, mixture **8** was identified as campesteryl-3-*O*- β -*D*-glucopyranoside (**8a**, 4 %); stigmasteryl-3-*O*- β -*D*-glucopyranoside (**8b**, 74 %) and β -sitosteryl-3-*O*- β -*D*-glucopyranoside (**8c**, 22 %).

ACKNOWLEDGMENTS

The authors are grateful to the National Science Council of the Republic of China for financial support (NSC 87-2113-M-126-005 and NSC 88-2113-M-126-005). The authors are also indebted to Mr. Nien-Yung Chiu (Institute of Chinese Pharmaceutical Sciences, China Medical College) for identification of the plant material, Ms. Lih-Mei Sheu (Regional Instruments Center at the National Chung-Hsing University) for per-forming MS measurements and Ms. Mei-Yueh Jean (Regional Instruments Center at the National Chung-Hsing University) for NMR measurements.

REFERENCES

- 1. Ying SS, Coloured Illustrated Flora of Taiwan; Published by Author: Taipei, pp 358, 1993.
- Lai MJ, Catalogue of Landscape and Ornamental Plants in Taiwan; Lamper Enterprises Co., Ltd.: Taipei, pp 53, 1995.
- 3. Jang LC, The Vocabulary of Chinese Medicine, vol. IV, Jau-Ren, Inc. Taichung, pp 3945, 1981.
- 4. Huang KF, Tseng PC, Wu LP, Liou SL, Constituents of the Leaves of *Erythrina arborescens*, Chin. Pharm. J., 52: 69-77, 2000.
- 5. Huang KF, Liou LE. Constituents of Erythrina crista-galli, Chin. Pharm. J., 49:305-314, 1997.
- Chen CH, Huang CF, Lee SS, Liu, Chen CS. Chemical Constituents from *Dry- petes hieranensis*, Chin. Pharm. J., 51:75-85, 1999.
- 7. Huang KF, Yen YF. Three Isoflavones from Erythrina variegata. J. Chin. Chem. Soc., 43:515-518, 1996.
- 8. Huang KF, Yen YF. Constituents of Erythrina variegata (II), Chin. Pharm. J., 49:21-29, 1997.
- 9. Huang KF, Tseng CF, Constituents of Erythrina variegata (III), Chin. Pharm. J., 50:123-128, 1998.
- 10. Markham KR, Mabry TJ. Ultraviolet-Visible and Proton Magnetic Resonance Spectroscopy of Flavonoids. In:

67

The Flavonoids. Harborne J, Mabry TJ, Mabry H. (eds.). Chapman and Hall, London, pp. 45-77, 1975.

- Wandji J, Nkengfack AE, Fomum ZT. A New Prenylated Isoflavone and Long Chain Esters from Two *Erythrina*. Species, J. Nat. Prod., 53:1425-1429, 1990.
- 12. Deshapande VH, Pendse AD, Pendse R. Erythrinins A, B, C, Three New Isoflavones from the Bark of *Erythrina variegata*, Indian J. Chem., 15B:205-207, 1977.

J Chin Med 12(1): 61-67, 2001

大葉刺桐莖皮成分之研究

黃克峰 徐清榮

靜宜大學 應用化學研究所

臺中

(2001年2月6日受理, 2001年2月23日收校訂稿, 2001年3月5日接受刊載)

本研究由大葉刺桐 (*Erythrina arborescens* Roxb.) 莖皮部分離得到八個成分, 經光譜分析確 定其結構分別為 squalene (1), phytosterols (2), oleanolic acid (3), alpinumisoflavone (4), erythrivarone C (5), warangalone (6), erythrinin C (7) 及 phytosteroid glycosides (8)。

關鍵字:大葉刺桐,豆科,異戊烯基異黃酮。

聯絡人:黃克峰,臺中縣沙鹿鎮中棲路 200 號,靜宜大學應用化學研究所,Tel: (04)26328001 Ext. 5206, Fax: (04)26327554。